Perbandingan metode Gradient Descent With Momentum, Scaled Conjugate Gradient, dan Quasi Newton untuk pembelajaran Feed-Forward Neural Network
Saved in:
Main Authors: | , SAPTI, Mujiyem, , Prof.Drs. H. Subanar, Ph.D |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2007
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/75242/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=36107 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
Similar Items
-
Perbandingan metode Steepest Descent, Konjugat Gradien dan BFGS Quasi-Newton untuk pembelajaran Feed-Forward Neural Network
by: , SUPRAPTO, et al.
Published: (2006) -
Feed forward gradient descent with momentum backpropagation neural network in tower defense targeting system
by: Ramos, John Ernest D.
Published: (2013) -
Quantum gradient descent and Newton's method for constrained polynomial optimization
by: Rebentrost, P., et al.
Published: (2021) -
STOCHASTIC GRADIENT DESCENT AND ITS EXTENSIONS
by: ZHANG JINGWEI
Published: (2021) -
Byzantine-resilient decentralized stochastic gradient descent
by: GUO, Shangwei, et al.
Published: (2022)