Evaluasi feature citra termografi kanker payudara dengan metode fraktal

Breast cancer is one kind of deadly diseases specially for women. Based on data of SIRS (Sistem Informasi Rumah Sakit) 2007, the percentage of breast cancer patients is 16,85% higher than serviks cancer which is 11,78%. Breast cancer become the first threat in America (suaramerdeka.com). Determinati...

Full description

Saved in:
Bibliographic Details
Main Author: ALAM, Wa Ode Siti Nur
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2010
Subjects:
Online Access:https://repository.ugm.ac.id/85390/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=46254
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.85390
record_format dspace
spelling id-ugm-repo.853902016-04-19T03:24:12Z https://repository.ugm.ac.id/85390/ Evaluasi feature citra termografi kanker payudara dengan metode fraktal ALAM, Wa Ode Siti Nur Health Information Systems (incl. Surveillance) Electrical and Electronic Engineering Breast cancer is one kind of deadly diseases specially for women. Based on data of SIRS (Sistem Informasi Rumah Sakit) 2007, the percentage of breast cancer patients is 16,85% higher than serviks cancer which is 11,78%. Breast cancer become the first threat in America (suaramerdeka.com). Determinating breast cancer stage is very important for a doctor to determinate the best theraphy on a patient. The main aim of this research is to evaluate fractal feature for diagnosing breast cancer stages. This research used 12 sheets thermal images which known stages and with added noise. The processing of image steps are: creating grayscale images, contrast adjustment, cancer object cropping, black and white image converting, then counting the fractal dimension of the images. This research develops a Back Propagation neural networks to classify breast cancer stages base on the images fractal dimension. The result of this research shows that the fractal feature is very good for diagnosing/classifying breast cancer stages on thermography image. By using back propagation, it gave best classification accuracy of about 100% on image (with and without noise). The result occured for noisy image on the highest SNR. [Yogyakarta] : Universitas Gadjah Mada 2010 Thesis NonPeerReviewed ALAM, Wa Ode Siti Nur (2010) Evaluasi feature citra termografi kanker payudara dengan metode fraktal. Masters thesis, Universitas Gadjah Mada. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=46254
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic Health Information Systems (incl. Surveillance)
Electrical and Electronic Engineering
spellingShingle Health Information Systems (incl. Surveillance)
Electrical and Electronic Engineering
ALAM, Wa Ode Siti Nur
Evaluasi feature citra termografi kanker payudara dengan metode fraktal
description Breast cancer is one kind of deadly diseases specially for women. Based on data of SIRS (Sistem Informasi Rumah Sakit) 2007, the percentage of breast cancer patients is 16,85% higher than serviks cancer which is 11,78%. Breast cancer become the first threat in America (suaramerdeka.com). Determinating breast cancer stage is very important for a doctor to determinate the best theraphy on a patient. The main aim of this research is to evaluate fractal feature for diagnosing breast cancer stages. This research used 12 sheets thermal images which known stages and with added noise. The processing of image steps are: creating grayscale images, contrast adjustment, cancer object cropping, black and white image converting, then counting the fractal dimension of the images. This research develops a Back Propagation neural networks to classify breast cancer stages base on the images fractal dimension. The result of this research shows that the fractal feature is very good for diagnosing/classifying breast cancer stages on thermography image. By using back propagation, it gave best classification accuracy of about 100% on image (with and without noise). The result occured for noisy image on the highest SNR.
format Theses and Dissertations
NonPeerReviewed
author ALAM, Wa Ode Siti Nur
author_facet ALAM, Wa Ode Siti Nur
author_sort ALAM, Wa Ode Siti Nur
title Evaluasi feature citra termografi kanker payudara dengan metode fraktal
title_short Evaluasi feature citra termografi kanker payudara dengan metode fraktal
title_full Evaluasi feature citra termografi kanker payudara dengan metode fraktal
title_fullStr Evaluasi feature citra termografi kanker payudara dengan metode fraktal
title_full_unstemmed Evaluasi feature citra termografi kanker payudara dengan metode fraktal
title_sort evaluasi feature citra termografi kanker payudara dengan metode fraktal
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2010
url https://repository.ugm.ac.id/85390/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=46254
_version_ 1681228019345129472