MODUL PSEUDO PROYEKTIF KECIL (SMALL PSEUDO PROJECTIVE MODULES)
An R-module M is called small pseudo projective modules if for any epimorfisme f: M A and small epimorfisme g: M A, there is h: M M such that f = g h. Small pseudo projective modules related is quasi-projective modules, small sub modules, small epimorfisme and stable sub modules. If M quasi projecti...
Saved in:
Main Authors: | , |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2011
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/89420/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=51201 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
id |
id-ugm-repo.89420 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.894202014-08-20T02:52:10Z https://repository.ugm.ac.id/89420/ MODUL PSEUDO PROYEKTIF KECIL (SMALL PSEUDO PROJECTIVE MODULES) , JEINNE MUMU , Dr. Budi Surodjo, MSi. ETD An R-module M is called small pseudo projective modules if for any epimorfisme f: M A and small epimorfisme g: M A, there is h: M M such that f = g h. Small pseudo projective modules related is quasi-projective modules, small sub modules, small epimorfisme and stable sub modules. If M quasi projective modules then M small pseudo projective modules. This relationship will be valid on the contrary, if M is a hollow module. This paper discusses the small pseudo projective modules are constructed of quasi projective modules. Also discussed the properties of small sub modules, small epimorfisme and stable sub modules in small pseudo projective modules. Keywords: quasi projective modules, small pseudo projective modules, small sub modules, small epimorfisme and stable sub modules. [Yogyakarta] : Universitas Gadjah Mada 2011 Thesis NonPeerReviewed , JEINNE MUMU and , Dr. Budi Surodjo, MSi. (2011) MODUL PSEUDO PROYEKTIF KECIL (SMALL PSEUDO PROJECTIVE MODULES). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=51201 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , JEINNE MUMU , Dr. Budi Surodjo, MSi. MODUL PSEUDO PROYEKTIF KECIL (SMALL PSEUDO PROJECTIVE MODULES) |
description |
An R-module M is called small pseudo projective modules if for any epimorfisme
f: M A and small epimorfisme g: M A, there is h: M M such that f = g h. Small
pseudo projective modules related is quasi-projective modules, small sub modules, small
epimorfisme and stable sub modules. If M quasi projective modules then M small pseudo
projective modules. This relationship will be valid on the contrary, if M is a hollow
module.
This paper discusses the small pseudo projective modules are constructed of quasi
projective modules. Also discussed the properties of small sub modules, small
epimorfisme and stable sub modules in small pseudo projective modules.
Keywords: quasi projective modules, small pseudo projective modules, small sub
modules, small epimorfisme and stable sub modules. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, JEINNE MUMU , Dr. Budi Surodjo, MSi. |
author_facet |
, JEINNE MUMU , Dr. Budi Surodjo, MSi. |
author_sort |
, JEINNE MUMU |
title |
MODUL PSEUDO PROYEKTIF KECIL
(SMALL PSEUDO PROJECTIVE MODULES) |
title_short |
MODUL PSEUDO PROYEKTIF KECIL
(SMALL PSEUDO PROJECTIVE MODULES) |
title_full |
MODUL PSEUDO PROYEKTIF KECIL
(SMALL PSEUDO PROJECTIVE MODULES) |
title_fullStr |
MODUL PSEUDO PROYEKTIF KECIL
(SMALL PSEUDO PROJECTIVE MODULES) |
title_full_unstemmed |
MODUL PSEUDO PROYEKTIF KECIL
(SMALL PSEUDO PROJECTIVE MODULES) |
title_sort |
modul pseudo proyektif kecil
(small pseudo projective modules) |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2011 |
url |
https://repository.ugm.ac.id/89420/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=51201 |
_version_ |
1681228773998985216 |