Hybrid multistep block method for solving neutral delay differential equations
The initial-value problem for first order single linear neutral delay differential equations (NDDEs) of constant and pantograph delay types have been solved by using hybrid multistep block method. The method has been derived by applying Taylor series interpolation polynomial and implementing the pre...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2020
|
Online Access: | http://journalarticle.ukm.my/15364/1/22.pdf http://journalarticle.ukm.my/15364/ http://www.ukm.my/jsm/malay_journals/jilid49bil4_2020/KandunganJilid49Bil4_2020.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Kebangsaan Malaysia |
Language: | English |
id |
my-ukm.journal.15364 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.153642020-10-16T01:18:46Z http://journalarticle.ukm.my/15364/ Hybrid multistep block method for solving neutral delay differential equations Nur Inshirah Naqiah Ismail, Zanariah Abdul Majid, Norazak Senu, The initial-value problem for first order single linear neutral delay differential equations (NDDEs) of constant and pantograph delay types have been solved by using hybrid multistep block method. The method has been derived by applying Taylor series interpolation polynomial and implementing the predictor-corrector formulas in PE(CE)m mode where m is the number of iterations for the proposed method. Both types of NDDEs will be solved at two-point simultaneously including the off-step point with constant step-size. In order to find the solution for NDDEs, the delay solutions of the unknown function will be interpolated using Lagrange interpolation polynomial and the derivative of the delay solutions will be obtained by applying divided difference formula. The order, consistency and convergence of the proposed method have been discussed in detail in the methods section. The properties of stability region for NDDEs have also been analysed. Numerical results presented have concluded that the proposed method is comparable with the existing method and is assumed to be reliable for solving first order NDDEs with constant and pantograph delay. Penerbit Universiti Kebangsaan Malaysia 2020-04 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/15364/1/22.pdf Nur Inshirah Naqiah Ismail, and Zanariah Abdul Majid, and Norazak Senu, (2020) Hybrid multistep block method for solving neutral delay differential equations. Sains Malaysiana, 49 (4). pp. 929-940. ISSN 0126-6039 http://www.ukm.my/jsm/malay_journals/jilid49bil4_2020/KandunganJilid49Bil4_2020.html |
institution |
Universiti Kebangsaan Malaysia |
building |
Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
The initial-value problem for first order single linear neutral delay differential equations (NDDEs) of constant and pantograph delay types have been solved by using hybrid multistep block method. The method has been derived by applying Taylor series interpolation polynomial and implementing the predictor-corrector formulas in PE(CE)m mode where m is the number of iterations for the proposed method. Both types of NDDEs will be solved at two-point simultaneously including the off-step point with constant step-size. In order to find the solution for NDDEs, the delay solutions of the unknown function will be interpolated using Lagrange interpolation polynomial and the derivative of the delay solutions will be obtained by applying divided difference formula. The order, consistency and convergence of the proposed method have been discussed in detail in the methods section. The properties of stability region for NDDEs have also been analysed. Numerical results presented have concluded that the proposed method is comparable with the existing method and is assumed to be reliable for solving first order NDDEs with constant and pantograph delay. |
format |
Article |
author |
Nur Inshirah Naqiah Ismail, Zanariah Abdul Majid, Norazak Senu, |
spellingShingle |
Nur Inshirah Naqiah Ismail, Zanariah Abdul Majid, Norazak Senu, Hybrid multistep block method for solving neutral delay differential equations |
author_facet |
Nur Inshirah Naqiah Ismail, Zanariah Abdul Majid, Norazak Senu, |
author_sort |
Nur Inshirah Naqiah Ismail, |
title |
Hybrid multistep block method for solving neutral delay differential equations |
title_short |
Hybrid multistep block method for solving neutral delay differential equations |
title_full |
Hybrid multistep block method for solving neutral delay differential equations |
title_fullStr |
Hybrid multistep block method for solving neutral delay differential equations |
title_full_unstemmed |
Hybrid multistep block method for solving neutral delay differential equations |
title_sort |
hybrid multistep block method for solving neutral delay differential equations |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2020 |
url |
http://journalarticle.ukm.my/15364/1/22.pdf http://journalarticle.ukm.my/15364/ http://www.ukm.my/jsm/malay_journals/jilid49bil4_2020/KandunganJilid49Bil4_2020.html |
_version_ |
1681490384856809472 |