Mechanical strength enhancement of porous nanocrystalline-silicon (pnc-Si) membrane via titanium-oxide (Ti-O) coating

Porous nanocrystalline silicon (pnc-Si) membrane is mainly studied as a blood filtration membrane, mimicking the glomerulus filtration membrane of a human kidney. However, the pnc-Si material itself is not hemocompatible and enormous membrane area to thickness ratio makes the membrane to be easily...

Full description

Saved in:
Bibliographic Details
Main Authors: Rhonira Latif, Muhammad Fahmi Jaafar, Mohd Faizal Aziz, Burhanuddin Yeop Majlis
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2020
Online Access:http://journalarticle.ukm.my/16173/1/20.pdf
http://journalarticle.ukm.my/16173/
https://www.ukm.my/jsm/malay_journals/jilid49bil12_2020/KandunganJilid49Bil12_2020.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Kebangsaan Malaysia
Language: English
Description
Summary:Porous nanocrystalline silicon (pnc-Si) membrane is mainly studied as a blood filtration membrane, mimicking the glomerulus filtration membrane of a human kidney. However, the pnc-Si material itself is not hemocompatible and enormous membrane area to thickness ratio makes the membrane to be easily fractured. Silicon surface modification via titanium-oxide (Ti-O) thin film layer deposition has been proven to be hemocompatible and the presence of Ti-O layer has been numerically studied to give higher membrane flexural strength. In this work, square pnc-Si membranes of 2 mm × 2 mm × 20 nm size have been fabricated with and without Ti-O layer. Point loading-unloading nanoindentation method has been performed and the membranes’ displacement behaviour subjected to point loads is studied. The pnc-Si membranes with Ti-O layer were found to attain higher fracture strength, membrane bending stiffness and average hardness with the increase of ~20, ~11 and ~24%, respectively, compared to bare pnc-Si membranes. The mechanical strength of a free-standing pnc-Si membrane is improved by depositing a Ti-O thin film layer on the membrane structure.