Load forecasting using time series models
Load forecasting is a process of predicting the future load demands. It is important for power system planners and demand controllers in ensuring that there would be enough generation to cope with the increasing demand. Accurate model for load forecasting can lead to a better budget planning, mainte...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Fakulti Kejuruteraan & Alam Bina
2009
|
Online Access: | http://journalarticle.ukm.my/286/1/1.pdf http://journalarticle.ukm.my/286/ http://www.ukm.my/jkukm/index.php/jkukm |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Kebangsaan Malaysia |
Language: | English |
id |
my-ukm.journal.286 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.2862016-12-14T06:26:56Z http://journalarticle.ukm.my/286/ Load forecasting using time series models Fadhilah Abd. Razak, Mahendran Shitan, Amir H. Hashim, Izham Z. Abidin, Load forecasting is a process of predicting the future load demands. It is important for power system planners and demand controllers in ensuring that there would be enough generation to cope with the increasing demand. Accurate model for load forecasting can lead to a better budget planning, maintenance scheduling and fuel management. This paper presents an attempt to forecast the maximum demand of electricity by finding an appropriate time series model. The methods considered in this studyinclude the Naïve method, Exponential smoothing, Seasonal Holt-Winters, ARMA, ARAR algorithm, and Regression with ARMA Errors. The performance of these different methods was evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Relative Percentage Error (MARPE). Based on these three criteria the pure autoregressive model with an order 2, or AR (2) under ARMA family emerged as the best model for forecasting electricity demand. Fakulti Kejuruteraan & Alam Bina 2009 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/286/1/1.pdf Fadhilah Abd. Razak, and Mahendran Shitan, and Amir H. Hashim, and Izham Z. Abidin, (2009) Load forecasting using time series models. Jurnal Kejuruteraan, 21 . pp. 53-62. http://www.ukm.my/jkukm/index.php/jkukm |
institution |
Universiti Kebangsaan Malaysia |
building |
Perpustakaan Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
Load forecasting is a process of predicting the future load demands. It is important for power system planners and demand controllers in ensuring that there would be enough generation to cope with the increasing demand. Accurate model for load forecasting can lead to a better budget planning, maintenance scheduling and fuel management. This paper presents an attempt to forecast the maximum demand of electricity by finding an appropriate time series model. The methods considered in this studyinclude the Naïve method, Exponential smoothing, Seasonal Holt-Winters, ARMA, ARAR algorithm, and Regression with ARMA Errors. The performance of these different methods was evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Relative Percentage Error (MARPE). Based on these three criteria the pure autoregressive model with an order 2, or AR (2) under ARMA family emerged as the best model for forecasting electricity demand. |
format |
Article |
author |
Fadhilah Abd. Razak, Mahendran Shitan, Amir H. Hashim, Izham Z. Abidin, |
spellingShingle |
Fadhilah Abd. Razak, Mahendran Shitan, Amir H. Hashim, Izham Z. Abidin, Load forecasting using time series models |
author_facet |
Fadhilah Abd. Razak, Mahendran Shitan, Amir H. Hashim, Izham Z. Abidin, |
author_sort |
Fadhilah Abd. Razak, |
title |
Load forecasting using time series models |
title_short |
Load forecasting using time series models |
title_full |
Load forecasting using time series models |
title_fullStr |
Load forecasting using time series models |
title_full_unstemmed |
Load forecasting using time series models |
title_sort |
load forecasting using time series models |
publisher |
Fakulti Kejuruteraan & Alam Bina |
publishDate |
2009 |
url |
http://journalarticle.ukm.my/286/1/1.pdf http://journalarticle.ukm.my/286/ http://www.ukm.my/jkukm/index.php/jkukm |
_version_ |
1643734664466137088 |