Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography

Atomic force microscopy (AFM) lithography was applied to produce nanoscale pattern for silicon nanowire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nanopatterns. A conductive AFM tip...

Full description

Saved in:
Bibliographic Details
Main Authors: Sabar Hutagalung, D., Kam Lew, C.
Format: Article
Language:English
Published: Universiti Kebangsaan Malaysia 2012
Online Access:http://journalarticle.ukm.my/5425/1/13%2520Sabar.pdf
http://journalarticle.ukm.my/5425/
http://www.ukm.my/jsm/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Kebangsaan Malaysia
Language: English
id my-ukm.journal.5425
record_format eprints
spelling my-ukm.journal.54252016-12-14T06:38:25Z http://journalarticle.ukm.my/5425/ Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography Sabar Hutagalung, D. Kam Lew, C. Atomic force microscopy (AFM) lithography was applied to produce nanoscale pattern for silicon nanowire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nanopatterns. A conductive AFM tip was used to grow the silicon oxide nanopatterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nanowire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nanowire transistor structure has been investigated. A completed silicon nanowire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nanowire transistor consists of a silicon nanowire that acts as a channel with source and drain pads. A lateral gate pad with a nanowire head was fabricated very close to the channel in the formation of transistor structures. Universiti Kebangsaan Malaysia 2012-08 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/5425/1/13%2520Sabar.pdf Sabar Hutagalung, D. and Kam Lew, C. (2012) Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography. Sains Malaysiana, 41 (8). pp. 1023-1028. ISSN 0126-6039 http://www.ukm.my/jsm/
institution Universiti Kebangsaan Malaysia
building Perpustakaan Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description Atomic force microscopy (AFM) lithography was applied to produce nanoscale pattern for silicon nanowire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nanopatterns. A conductive AFM tip was used to grow the silicon oxide nanopatterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nanowire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nanowire transistor structure has been investigated. A completed silicon nanowire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nanowire transistor consists of a silicon nanowire that acts as a channel with source and drain pads. A lateral gate pad with a nanowire head was fabricated very close to the channel in the formation of transistor structures.
format Article
author Sabar Hutagalung, D.
Kam Lew, C.
spellingShingle Sabar Hutagalung, D.
Kam Lew, C.
Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
author_facet Sabar Hutagalung, D.
Kam Lew, C.
author_sort Sabar Hutagalung, D.
title Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
title_short Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
title_full Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
title_fullStr Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
title_full_unstemmed Effect of TMAH etching duration on the formation of silicon nanowire transistor patterned by AFM nanolithography
title_sort effect of tmah etching duration on the formation of silicon nanowire transistor patterned by afm nanolithography
publisher Universiti Kebangsaan Malaysia
publishDate 2012
url http://journalarticle.ukm.my/5425/1/13%2520Sabar.pdf
http://journalarticle.ukm.my/5425/
http://www.ukm.my/jsm/
_version_ 1643736409691914240