Nanostructured AlGaAsSb materials for thermophotovoltaic solar cells applications

Thermophotovoltaic conversion using heat to generate electricity in photovoltaic cells based on the detraction of thermal radiation suffers from many engineering challenges. The focus of this paper is to study the nanostructure of AlGaAsSb for thermophotovoltaic energy conversion using lattice-ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Bensenouci, Djamel, Merabet, Boualem, Ozkendir, Osman M., Maleque, Md. Abdul
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:http://irep.iium.edu.my/100548/7/100548_Nanostructured%20AlGaAsSb%20materials.pdf
http://irep.iium.edu.my/100548/
https://www.mdpi.com/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
Description
Summary:Thermophotovoltaic conversion using heat to generate electricity in photovoltaic cells based on the detraction of thermal radiation suffers from many engineering challenges. The focus of this paper is to study the nanostructure of AlGaAsSb for thermophotovoltaic energy conversion using lattice-matched heterostructures of GaSb-based materials in order to overcome the current challenges. The XAFS spectroscopy technique was used to analyze electronic structures and optical properties of GaSb, (Al, In) GaSbAs. The XAFS spectroscopy analysis showed a powerful decay at peak intensity that reveals to be related to a loss in Sb amount and light As atoms replaced in Sb atoms by 25%. Moreover, it was found that Al/In doped samples have highly symmetric data features (same atomic species substitution). The narrow direct bandgap energy, Eg of Al0.125Ga0.875Sb0.75As0.25 material raised (0.4–0.6 eV) compared to conventional photovoltaic cell bandgap energy (which is generally less than 0.4 eV) with weak absorption coefficients. The thermoelectric properties of AlGaAsSb computed via Botlztrap code showed that the electrons made up the majority of the charge carriers in AlGaAsSb. This nanostructure material exhibited a higher and acceptable figure of merit and demonstrated a promising thermoelectric material for solar thermophotovoltaic applications.