Quantum key distribution using decoy state protocol

Problem statement: Quantum key distribution provides unconditional security guaranteed by the fundamental laws of quantum physics. Unfortunately, for real-life experimental set-ups, which mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it possible...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali, Sellami, Saharudin, Shuhairi, Wahiddin, Mohamed Ridza
Format: Article
Language:English
Published: Science Publications 2009
Subjects:
Online Access:http://irep.iium.edu.my/1018/1/Quantum_key_distribution_using_decoy_state_protocol.pdf
http://irep.iium.edu.my/1018/
http://thescipub.com/abstract/10.3844/ajeassp.2009.694.698
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
id my.iium.irep.1018
record_format dspace
spelling my.iium.irep.10182020-06-23T06:55:36Z http://irep.iium.edu.my/1018/ Quantum key distribution using decoy state protocol Ali, Sellami Saharudin, Shuhairi Wahiddin, Mohamed Ridza QA76 Computer software Problem statement: Quantum key distribution provides unconditional security guaranteed by the fundamental laws of quantum physics. Unfortunately, for real-life experimental set-ups, which mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it possible for sophisticated eavesdroppers to launch various subtle eavesdropping attacks including the Photon Number Splitting (PNS) attack. The decoy state protocols recently proposed to beat PNS attack and to improve dramatically distance and secure key generation rate of Quantum Key Distribution (QKD). Approach: Objective of this study was experimental implementation of weak decoy + vacuum states QKD for increasing the performance of QKD system. To show conceptually how simple it was to apply the weak decoy + vacuum state idea to a commercial QKD system, we chosen ID-3000 commercial quantum key distribution system manufactured by id quantique. To implement the weak decoy + vacuum state protocol, we had to add some new optical and electronics components to id quantique and to attenuate each signal to the intensity of either signal state or weak decoy or vacuum state randomly. Results: In our implementation, the attenuation will be done by placing a VOA (variable optical attenuator) in Alice’s side. Specifically, our QKD system required the polarizations of 2 pulses from the same signal to be orthogonal. Therefore the VOA must be polarization independent so as to attenuate the two pulses equally. The VOA utilized in experiment to attenuate signals dynamically was Intensity Modulator (IM). We had implemented weak + vacuum protocol on a modified commercial QKD system over a 25 km of telecom fibers with an unconditionally secure key rate of 6.2931x10-4 per pulse. Conclusion: By making simple modifications to a commercial quantum key distribution system, we could achieve much better performance with substantially higher key generation rate and longer distance than QKD system without decoy state. Science Publications 2009 Article PeerReviewed application/pdf en http://irep.iium.edu.my/1018/1/Quantum_key_distribution_using_decoy_state_protocol.pdf Ali, Sellami and Saharudin, Shuhairi and Wahiddin, Mohamed Ridza (2009) Quantum key distribution using decoy state protocol. American Journal of Engineering and Applied Sciences, 2 (4). pp. 694-698. ISSN 1941-7020 http://thescipub.com/abstract/10.3844/ajeassp.2009.694.698 DOI: 10.3844/ajeassp.2009.694.698
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
topic QA76 Computer software
spellingShingle QA76 Computer software
Ali, Sellami
Saharudin, Shuhairi
Wahiddin, Mohamed Ridza
Quantum key distribution using decoy state protocol
description Problem statement: Quantum key distribution provides unconditional security guaranteed by the fundamental laws of quantum physics. Unfortunately, for real-life experimental set-ups, which mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it possible for sophisticated eavesdroppers to launch various subtle eavesdropping attacks including the Photon Number Splitting (PNS) attack. The decoy state protocols recently proposed to beat PNS attack and to improve dramatically distance and secure key generation rate of Quantum Key Distribution (QKD). Approach: Objective of this study was experimental implementation of weak decoy + vacuum states QKD for increasing the performance of QKD system. To show conceptually how simple it was to apply the weak decoy + vacuum state idea to a commercial QKD system, we chosen ID-3000 commercial quantum key distribution system manufactured by id quantique. To implement the weak decoy + vacuum state protocol, we had to add some new optical and electronics components to id quantique and to attenuate each signal to the intensity of either signal state or weak decoy or vacuum state randomly. Results: In our implementation, the attenuation will be done by placing a VOA (variable optical attenuator) in Alice’s side. Specifically, our QKD system required the polarizations of 2 pulses from the same signal to be orthogonal. Therefore the VOA must be polarization independent so as to attenuate the two pulses equally. The VOA utilized in experiment to attenuate signals dynamically was Intensity Modulator (IM). We had implemented weak + vacuum protocol on a modified commercial QKD system over a 25 km of telecom fibers with an unconditionally secure key rate of 6.2931x10-4 per pulse. Conclusion: By making simple modifications to a commercial quantum key distribution system, we could achieve much better performance with substantially higher key generation rate and longer distance than QKD system without decoy state.
format Article
author Ali, Sellami
Saharudin, Shuhairi
Wahiddin, Mohamed Ridza
author_facet Ali, Sellami
Saharudin, Shuhairi
Wahiddin, Mohamed Ridza
author_sort Ali, Sellami
title Quantum key distribution using decoy state protocol
title_short Quantum key distribution using decoy state protocol
title_full Quantum key distribution using decoy state protocol
title_fullStr Quantum key distribution using decoy state protocol
title_full_unstemmed Quantum key distribution using decoy state protocol
title_sort quantum key distribution using decoy state protocol
publisher Science Publications
publishDate 2009
url http://irep.iium.edu.my/1018/1/Quantum_key_distribution_using_decoy_state_protocol.pdf
http://irep.iium.edu.my/1018/
http://thescipub.com/abstract/10.3844/ajeassp.2009.694.698
_version_ 1672610049475739648