Study on the optimization of surface modification processing of SiCp and tribological properties of AA6061-SiCp based composites
The unique property combination of Al/SiCp based composites make them very attractive for applications in automotive and aerospace industries. The choice of composite materials for these applications is directly influenced by their inherent properties which are a function of the processing route em...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Deer Hill Publications
2023
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/103649/2/103649_Study%20on%20the%20optimization%20of%20surface%20modification.pdf http://irep.iium.edu.my/103649/ https://www.deerhillpublishing.com/index.php/ijemm/article/view/245/235 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English |
Summary: | The unique property combination of Al/SiCp based composites make them very attractive for applications in
automotive and aerospace industries. The choice of composite materials for these applications is directly influenced by their inherent properties which are a function of the processing route employed. Like other processing parameters, surface modification treatment of SiCp can play a major role in determining the properties of Al/SiCp composites. In this study, the effects of SiC reinforcement (wt%) fractions (SRF), surface oxidation temperature (SOT) and preheating temperature (PT) parameters on the wear and friction properties of stir-cast Al-SiCp based composite were
investigated. Experimental data and models are generated and analyzed based on a three-factors-five-level central
composite design (CCD) and analysis of variance (ANOVA). The empirical models developed for wear rate and
coefficient of friction (COF) considering the pre-processing parameters adequately predicts the Al-SiCp properties with
the silicon carbide reinforcement (wt%) fraction emerged as the most influencing factor. The goal of the optimization
process is to minimize both wear rate and COF. For wear rate, SRF at 44.49 % contribution had the most influence
on wear rate, while SOT and PT had 0.65 % and 1.03 % influence on wear rate respectively. For COF, SRF also
showed highest influence of 35.48 % on COF, while SOT and PT had 0.047% and 2.66% influence on COF
respectively. From the optimization analysis, the set of conditions that simultaneously optimizes both wear rate and
COF are 10% SiC weight (SW), 1234°C surface oxidation temperature (SOT), and 376.2°C preheat temperature (PT).
The resulting responses at this optimized condition are minimum wear rate of 0.11 mm3 /m and COF of 0.11 with a
confidence and desirability level of 1. |
---|