The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data

The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties co...

Full description

Saved in:
Bibliographic Details
Main Authors: Zamani, Abu Sarwar, Hassan Abdalla Hashim, Aisha, Akhtar, Md. Mobin, Samdani, Faizan, Siddiqui, Ahmad Talha, Alluhayb, Adel, Hamza, Manar Ahmed, Ahmad, Naved
Format: Article
Language:English
English
Published: Elsevier 2023
Subjects:
Online Access:http://irep.iium.edu.my/108129/7/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted.pdf
http://irep.iium.edu.my/108129/8/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted_Scopus.pdf
http://irep.iium.edu.my/108129/
https://www.sciencedirect.com/science/article/pii/S1018364723003890?via%3Dihub
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
English
id my.iium.irep.108129
record_format dspace
spelling my.iium.irep.1081292023-11-23T04:10:32Z http://irep.iium.edu.my/108129/ The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data Zamani, Abu Sarwar Hassan Abdalla Hashim, Aisha Akhtar, Md. Mobin Samdani, Faizan Siddiqui, Ahmad Talha Alluhayb, Adel Hamza, Manar Ahmed Ahmad, Naved TK7885 Computer engineering The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis. Elsevier 2023-12 Article PeerReviewed application/pdf en http://irep.iium.edu.my/108129/7/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted.pdf application/pdf en http://irep.iium.edu.my/108129/8/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted_Scopus.pdf Zamani, Abu Sarwar and Hassan Abdalla Hashim, Aisha and Akhtar, Md. Mobin and Samdani, Faizan and Siddiqui, Ahmad Talha and Alluhayb, Adel and Hamza, Manar Ahmed and Ahmad, Naved (2023) The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data. Journal of King Saud University - Science, 35 (9). pp. 1-9. ISSN 10183647 https://www.sciencedirect.com/science/article/pii/S1018364723003890?via%3Dihub doi:10.1016/j.jksus.2023.102927
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic TK7885 Computer engineering
spellingShingle TK7885 Computer engineering
Zamani, Abu Sarwar
Hassan Abdalla Hashim, Aisha
Akhtar, Md. Mobin
Samdani, Faizan
Siddiqui, Ahmad Talha
Alluhayb, Adel
Hamza, Manar Ahmed
Ahmad, Naved
The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
description The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis.
format Article
author Zamani, Abu Sarwar
Hassan Abdalla Hashim, Aisha
Akhtar, Md. Mobin
Samdani, Faizan
Siddiqui, Ahmad Talha
Alluhayb, Adel
Hamza, Manar Ahmed
Ahmad, Naved
author_facet Zamani, Abu Sarwar
Hassan Abdalla Hashim, Aisha
Akhtar, Md. Mobin
Samdani, Faizan
Siddiqui, Ahmad Talha
Alluhayb, Adel
Hamza, Manar Ahmed
Ahmad, Naved
author_sort Zamani, Abu Sarwar
title The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
title_short The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
title_full The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
title_fullStr The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
title_full_unstemmed The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
title_sort prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
publisher Elsevier
publishDate 2023
url http://irep.iium.edu.my/108129/7/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted.pdf
http://irep.iium.edu.my/108129/8/108129_The%20prediction%20of%20sleep%20quality%20using%20wearable-assisted_Scopus.pdf
http://irep.iium.edu.my/108129/
https://www.sciencedirect.com/science/article/pii/S1018364723003890?via%3Dihub
_version_ 1783876118549364736