Improving deep reinforcement learning training convergence using fuzzy logic for autonomous mobile robot navigation
Autonomous robotic navigation has become hotspot research, particularly in complex environments, where inefficient exploration can lead to inefficient navigation. Previous approaches often had a wide range of assumptions and prior knowledge. Adaptations of machine learning (ML) approaches, especiall...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | مقال |
اللغة: | English English |
منشور في: |
The Science and Information (SAI) Organization
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://irep.iium.edu.my/108609/7/108609_Improving%20deep%20reinforcement%20learning%20training.pdf http://irep.iium.edu.my/108609/13/108609_%20Improving%20Deep%20Reinforcement%20Learning%20Training_Scopus.pdf http://irep.iium.edu.my/108609/ https://thesai.org/Downloads/Volume14No11/Paper_95-Improving_Deep_Reinforcement_Learning_Training_Convergence.pdf https://dx.doi.org/10.14569/IJACSA.2023.0141195 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Universiti Islam Antarabangsa Malaysia |
اللغة: | English English |
الانترنت
http://irep.iium.edu.my/108609/7/108609_Improving%20deep%20reinforcement%20learning%20training.pdfhttp://irep.iium.edu.my/108609/13/108609_%20Improving%20Deep%20Reinforcement%20Learning%20Training_Scopus.pdf
http://irep.iium.edu.my/108609/
https://thesai.org/Downloads/Volume14No11/Paper_95-Improving_Deep_Reinforcement_Learning_Training_Convergence.pdf
https://dx.doi.org/10.14569/IJACSA.2023.0141195