Modeling and experimental validation of NePCM-Nanofluid-Based PVT system
Photovoltaic thermal (PVT) systems, when combined with nanoparticle-enhanced phase change materials (NePCM-nanofluid), significantly enhance energy efficiency in solar thermal applications. This study introduces a mathematical model for a nanofluid/NePCM PVT system validated by experimental data. Th...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
التنسيق: | مقال |
اللغة: | English English |
منشور في: |
SEMARAK ILMU PUBLISHING
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://irep.iium.edu.my/115158/7/115158_Modeling%20and%20experimental.pdf http://irep.iium.edu.my/115158/13/115158_Modeling%20and%20experimental_Scopus.pdf http://irep.iium.edu.my/115158/ https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/issue/view/609 https://doi.org/10.37934/arfmts.122.1.205222 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Photovoltaic thermal (PVT) systems, when combined with nanoparticle-enhanced phase change materials (NePCM-nanofluid), significantly enhance energy efficiency in solar thermal applications. This study introduces a mathematical model for a nanofluid/NePCM PVT system validated by experimental data. The model demonstrates electrical and thermal efficiencies of 14.50% and 70%, respectively, closely aligning with experimental results of 14% and 69.40%. The maximum temperatures observed are 43.1°C for glass, 42.60°C for the PV cell, 42°C for wax, and 41.8°C for the nanofluid. These findings underscore the model's accuracy and its practical potential for optimizing PVT systems in high-temperature environments. |
---|