The liquid phase oxidation of styrene with tungsten modified silica as a catalyst
Tungsten was incorporated into silica matrix using sodium silicate from rice husk at pH 10, 7 and 3. These catalysts were labeled as RHW-10, RHW-7 and RHW-3. The pH was found to have a strong influence on the structure of the resulting silica–tungsten species and its catalytic activity. Analysis sug...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2011
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/22280/1/Chemical_Engineering_Journal_171_%282011%29_1379%E2%80%931386.pdf http://irep.iium.edu.my/22280/ http://www.sciencedirect.com/science/article/pii/S1385894711006127 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English |
id |
my.iium.irep.22280 |
---|---|
record_format |
dspace |
spelling |
my.iium.irep.222802013-06-20T06:45:06Z http://irep.iium.edu.my/22280/ The liquid phase oxidation of styrene with tungsten modified silica as a catalyst Adam, Farook Mohamed Iqbal, Mohammad Anwar QD Chemistry Tungsten was incorporated into silica matrix using sodium silicate from rice husk at pH 10, 7 and 3. These catalysts were labeled as RHW-10, RHW-7 and RHW-3. The pH was found to have a strong influence on the structure of the resulting silica–tungsten species and its catalytic activity. Analysis suggests that the catalysts were composed of isolated [WO4]2− species, isolated tungsten species or low oligomeric tungsten oxide species and crystalline WO3 species. The catalytic activity was tested in the liquid phase oxidation of styrene using H2O2 as oxidant. RHW-3 showed better catalytic activity than RHW-10 and RHW-7 due to its higher tungsten loading. The reaction is proposed to be catalyzed by pertungstic acid like intermediate which was formed upon the interaction of tungsten oxo species (WO) with H2O2. Benzaldehyde was obtained via styrene oxide as the major product with 100% selectivity. RHW-3 could be re-used several times without losing its catalytic activity even though a small amount of tungsten species leached out from the support. Elsevier BV 2011-05 Article REM application/pdf en http://irep.iium.edu.my/22280/1/Chemical_Engineering_Journal_171_%282011%29_1379%E2%80%931386.pdf Adam, Farook and Mohamed Iqbal, Mohammad Anwar (2011) The liquid phase oxidation of styrene with tungsten modified silica as a catalyst. Chemical Engineering Journal, 171 (3). pp. 1379-1386. ISSN 1385-8947 http://www.sciencedirect.com/science/article/pii/S1385894711006127 10.1016/j.cej.2011.05.052 |
institution |
Universiti Islam Antarabangsa Malaysia |
building |
IIUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
International Islamic University Malaysia |
content_source |
IIUM Repository (IREP) |
url_provider |
http://irep.iium.edu.my/ |
language |
English |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Adam, Farook Mohamed Iqbal, Mohammad Anwar The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
description |
Tungsten was incorporated into silica matrix using sodium silicate from rice husk at pH 10, 7 and 3. These catalysts were labeled as RHW-10, RHW-7 and RHW-3. The pH was found to have a strong influence on the structure of the resulting silica–tungsten species and its catalytic activity. Analysis suggests that the catalysts were composed of isolated [WO4]2− species, isolated tungsten species or low oligomeric tungsten oxide species and crystalline WO3 species. The catalytic activity was tested in the liquid phase oxidation of styrene using H2O2 as oxidant. RHW-3 showed better catalytic activity than RHW-10 and RHW-7 due to its higher tungsten loading. The reaction is proposed to be catalyzed by pertungstic acid like intermediate which was formed upon the interaction of tungsten oxo species (WO) with H2O2. Benzaldehyde was obtained via styrene oxide as the major product with 100% selectivity. RHW-3 could be re-used several times without losing its catalytic activity even though a small amount of tungsten species leached out from the support. |
format |
Article |
author |
Adam, Farook Mohamed Iqbal, Mohammad Anwar |
author_facet |
Adam, Farook Mohamed Iqbal, Mohammad Anwar |
author_sort |
Adam, Farook |
title |
The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
title_short |
The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
title_full |
The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
title_fullStr |
The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
title_full_unstemmed |
The liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
title_sort |
liquid phase oxidation of styrene with tungsten modified silica as a catalyst |
publisher |
Elsevier BV |
publishDate |
2011 |
url |
http://irep.iium.edu.my/22280/1/Chemical_Engineering_Journal_171_%282011%29_1379%E2%80%931386.pdf http://irep.iium.edu.my/22280/ http://www.sciencedirect.com/science/article/pii/S1385894711006127 |
_version_ |
1643608380463382528 |