Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface

We report the results of a quasiclassical trajectory (QCT) study of a prototype alkali-hydrogen-halide exchange reaction Li + FH → LiF + H on an ab initio potential-energy surface for collinear as well as non-collinear geometries. A vibrational threshold equal to that of the barrier (21 kcal mol−1)...

Full description

Saved in:
Bibliographic Details
Main Author: Ibrahim Ali , Noorbatcha
Format: Article
Language:English
Published: Elsevier Ltd. 1984
Subjects:
Online Access:http://irep.iium.edu.my/35867/1/ChemPhys1983.pdf
http://irep.iium.edu.my/35867/
http://www.sciencedirect.com/science/article/pii/0301010483850666
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
id my.iium.irep.35867
record_format dspace
spelling my.iium.irep.358672014-03-09T02:15:11Z http://irep.iium.edu.my/35867/ Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface Ibrahim Ali , Noorbatcha QD Chemistry We report the results of a quasiclassical trajectory (QCT) study of a prototype alkali-hydrogen-halide exchange reaction Li + FH → LiF + H on an ab initio potential-energy surface for collinear as well as non-collinear geometries. A vibrational threshold equal to that of the barrier (21 kcal mol−1) noted for the collinear collisions is not found for the 3D collisions. Nevertheless, we do find that vibrational energy (V) is much more efficient than translational energy (T) in causing this reaction. There is a unique effect of reagent rotation on the reaction cross section (Sr) in that with increase in the rotational quantum number (J) from 0 through 15 for the vibrational state ν = 2 at T = 8.7 kcal mol−l, Sr decreases initially and then increases steeply. This is followed by a decline and a possible levelling off in St. We attribute the initial decline in Sr(J) to the disruption of the preferred alignment due to rotation. Further increase in rotation brings the molecule back into alignment and with much more rotational velocity, the molecule appears as a blur explaining the levelling off of Sr. Interestingly, for ν = 0, there is a moderate rotational enhancement partly due to the increase in the number of product states becoming available with increase in the total energy. The effect of various forms of energy on other reaction attributes like product vibrational- and rotational-energy distribution and angular distribution has also been studied. Our calculated value of Sr as well as the product angular distribution and the coplanarity of the reaction are in good agreement with the exerimental results for ν = 0, but they differ significantly from the QCT results of Shapiro and co-workers on their semi-empirical PES. Copyright © 1997 Published by Elsevier B.V. Elsevier Ltd. 1984-01-15 Article REM application/pdf en http://irep.iium.edu.my/35867/1/ChemPhys1983.pdf Ibrahim Ali , Noorbatcha (1984) Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface. Chemical Physics , 77 (1). 67-91. ISSN 0301-0104 http://www.sciencedirect.com/science/article/pii/0301010483850666 DOI: 10.1063/1.448122
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
topic QD Chemistry
spellingShingle QD Chemistry
Ibrahim Ali , Noorbatcha
Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
description We report the results of a quasiclassical trajectory (QCT) study of a prototype alkali-hydrogen-halide exchange reaction Li + FH → LiF + H on an ab initio potential-energy surface for collinear as well as non-collinear geometries. A vibrational threshold equal to that of the barrier (21 kcal mol−1) noted for the collinear collisions is not found for the 3D collisions. Nevertheless, we do find that vibrational energy (V) is much more efficient than translational energy (T) in causing this reaction. There is a unique effect of reagent rotation on the reaction cross section (Sr) in that with increase in the rotational quantum number (J) from 0 through 15 for the vibrational state ν = 2 at T = 8.7 kcal mol−l, Sr decreases initially and then increases steeply. This is followed by a decline and a possible levelling off in St. We attribute the initial decline in Sr(J) to the disruption of the preferred alignment due to rotation. Further increase in rotation brings the molecule back into alignment and with much more rotational velocity, the molecule appears as a blur explaining the levelling off of Sr. Interestingly, for ν = 0, there is a moderate rotational enhancement partly due to the increase in the number of product states becoming available with increase in the total energy. The effect of various forms of energy on other reaction attributes like product vibrational- and rotational-energy distribution and angular distribution has also been studied. Our calculated value of Sr as well as the product angular distribution and the coplanarity of the reaction are in good agreement with the exerimental results for ν = 0, but they differ significantly from the QCT results of Shapiro and co-workers on their semi-empirical PES. Copyright © 1997 Published by Elsevier B.V.
format Article
author Ibrahim Ali , Noorbatcha
author_facet Ibrahim Ali , Noorbatcha
author_sort Ibrahim Ali , Noorbatcha
title Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
title_short Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
title_full Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
title_fullStr Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
title_full_unstemmed Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
title_sort dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface
publisher Elsevier Ltd.
publishDate 1984
url http://irep.iium.edu.my/35867/1/ChemPhys1983.pdf
http://irep.iium.edu.my/35867/
http://www.sciencedirect.com/science/article/pii/0301010483850666
_version_ 1643610870874374144