Penyelesaian masalah data ketakpastian menggunakan splin-b kabur(Solving problems of uncertain data using fuzzy b-spline)

The construction of a geometric model in Computer Aided Geometrical Design (CAGD) with uncertain data points are difficult and challenging. In this paper, the construction of a fuzzy B-spline model as a mathematical representation for the curve of uncertain data using fuzzy control points and deffuz...

Full description

Saved in:
Bibliographic Details
Main Authors: Wahab, Abdul Fatah, Md Ali, Jamaluddin, Abd Majid, Ahmad, Md. Tap, Abu Osman
Format: Article
Language:English
Published: Penerbit UKM 2010
Subjects:
Online Access:http://irep.iium.edu.my/3773/1/AOMT__Sains_Malaysiana_39_4__2010.pdf
http://irep.iium.edu.my/3773/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
Description
Summary:The construction of a geometric model in Computer Aided Geometrical Design (CAGD) with uncertain data points are difficult and challenging. In this paper, the construction of a fuzzy B-spline model as a mathematical representation for the curve of uncertain data using fuzzy control points and deffuzified control points is discussed. Cubic fuzzy B-spline or defuzzified B-spline curve for uncertainty data problems will be described using the cubic fuzzy B-spline approximation methods which are defined through fuzzy and defuzzification control points. For solving uncertain data, a method of fuzzification and defuzzification of component fuzzy (defuzzify) data point together with their model was introduce (Pembinaan model geometri berbantukan komputer (CAGD) dengan titik data yang mempunyai ketakpastian adalah sukar dan mencabar. Dalam kertas ini, pembinaan model splin-B kabur sebagai perwakilan matematik bagi lengkung dengan data ketakpastian menggunakan titik kawalan kabur dan titik kawalan penyahkaburan dibincangkan. Lengkung splin-B kabur atau splin-B penyahkaburan kubik untuk masalah data ketakpastian akan diperihalkan dengan menggunakan kaedah penghampiran splin-B kubik yang ditakrif menerusi titik kawalan kabur dan titik kawalan penyahkaburan. Bagi menyelesaikan masalah mengenai titik data ketakpastian pula, kaedah pengkaburan dan penyahkaburan titik data berkomponen kabur (penyahkaburan) beserta modelnya diperkenalkan. Bagi menguji tahap keberkesanan model, beberapa contoh lengkung simulasi data tersebut juga dibincangkan. Kata kunci: Data ketakpastian; penyahkaburan; splin-B kabur; titik kawalan kabur)