Protein profiling of different plant tissues from herb phyllanthus niruri

Herb Phyllanthus niruri (P. niruri) is known to have various pharmacological functions including anticancer, antibacterial, antioxidant, anti-hypertensive and also anti-diabetic properties. In this research, the proteomic part of P. niruri was studied to determine the bioactive peptides that respo...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Nail, Ainul Mardhiah, Md Zin, Noor Hasniza
Format: Article
Language:English
Published: Universiti Teknologi Malaysia ( UTM ) 2015
Subjects:
Online Access:http://irep.iium.edu.my/77007/1/77007_PROTEIN%20PROFILING%20OF%20DIFFERENT%20PLANT%20TISSUES_article.pdf
http://irep.iium.edu.my/77007/
https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/6714/4440
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
Description
Summary:Herb Phyllanthus niruri (P. niruri) is known to have various pharmacological functions including anticancer, antibacterial, antioxidant, anti-hypertensive and also anti-diabetic properties. In this research, the proteomic part of P. niruri was studied to determine the bioactive peptides that responsible for specific characteristics. Total soluble proteins from different plant parts of freshly collected P. niruri were extracted using TCA/acetone method and then quantified using Bradford assay. Fruits part was found to have a significantly higher amount of proteins (4.91µg/µl + 0.21) compared to leaves (4.18µg/µl + 0.15). To determine the quality of proteins in the crude extract, SDS-Page was carried out which separates proteins in the basis of molecular weight. Proteins extracted from leaves were widely distributed between the range of 3.5 kDa to 160 kDA. Meanwhile, proteins in fruits mainly distributed within the range of 15 kDa to 80 kDa. The most highly expressed protein band was found in fruit, located in between 30 to 40 kDa. The protein extracts were then further analyzed based on the molecular weight and isoelectric points using two-dimensional gel electrophoresis (2D-GE) approach. Based on the profile pattern obtained from 2D-GE analysis, protein extract from fruits seems to express more protein spots compared to protein extract from leaves. Protein spots from fruit are seen to be intensely resolved within pH 4 to 10 at molecular weight between 10 kDa to 80 kDa. On the other hand, protein spots from leaves were moderately resolved at pH 4 to 10 at molecular weight within 10 kDa to 50 kDa.