On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex

In this paper, we consider the cubic stochastic operator (CSO) defined on 1-dimensional simplex, S 1 . We provide a full description of orthogonal preserving (OP) cubic stochastic operators on the simplex. We provide full description of the fixed points subject to two different parameters for the V...

Full description

Saved in:
Bibliographic Details
Main Authors: Mukhamedov, Farrukh, Pah, Chin Hee, Rosli, Azizi
Format: Conference or Workshop Item
Language:English
English
Published: 2019
Subjects:
Online Access:http://irep.iium.edu.my/78489/1/2019-mfpchar-AIP.pdf
http://irep.iium.edu.my/78489/7/78489_On%20orthogonality%20preserving%20cubic%20stochastic%20operator_Scopus.pdf
http://irep.iium.edu.my/78489/
http://doi.org/10.1063/1.5136362
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
English
id my.iium.irep.78489
record_format dspace
spelling my.iium.irep.784892020-07-14T01:32:10Z http://irep.iium.edu.my/78489/ On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex Mukhamedov, Farrukh Pah, Chin Hee Rosli, Azizi QA Mathematics In this paper, we consider the cubic stochastic operator (CSO) defined on 1-dimensional simplex, S 1 . We provide a full description of orthogonal preserving (OP) cubic stochastic operators on the simplex. We provide full description of the fixed points subject to two different parameters for the Volterra OP CSO on the simplex. In the last section we describe the behaviour of the fixed points. 2019 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/78489/1/2019-mfpchar-AIP.pdf application/pdf en http://irep.iium.edu.my/78489/7/78489_On%20orthogonality%20preserving%20cubic%20stochastic%20operator_Scopus.pdf Mukhamedov, Farrukh and Pah, Chin Hee and Rosli, Azizi (2019) On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex. In: The International Conference on Mathematical Sciences and Technology 2018, 10 - 12 Dec 2018, Penang. http://doi.org/10.1063/1.5136362 doi:10.1063/1.5136362
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic QA Mathematics
spellingShingle QA Mathematics
Mukhamedov, Farrukh
Pah, Chin Hee
Rosli, Azizi
On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
description In this paper, we consider the cubic stochastic operator (CSO) defined on 1-dimensional simplex, S 1 . We provide a full description of orthogonal preserving (OP) cubic stochastic operators on the simplex. We provide full description of the fixed points subject to two different parameters for the Volterra OP CSO on the simplex. In the last section we describe the behaviour of the fixed points.
format Conference or Workshop Item
author Mukhamedov, Farrukh
Pah, Chin Hee
Rosli, Azizi
author_facet Mukhamedov, Farrukh
Pah, Chin Hee
Rosli, Azizi
author_sort Mukhamedov, Farrukh
title On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
title_short On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
title_full On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
title_fullStr On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
title_full_unstemmed On orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
title_sort on orthogonality preserving cubic stochastic operator defined on 1-dimensional simplex
publishDate 2019
url http://irep.iium.edu.my/78489/1/2019-mfpchar-AIP.pdf
http://irep.iium.edu.my/78489/7/78489_On%20orthogonality%20preserving%20cubic%20stochastic%20operator_Scopus.pdf
http://irep.iium.edu.my/78489/
http://doi.org/10.1063/1.5136362
_version_ 1672610156471386112