An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting

Forecasting accurate future price is very important in financial sector. An optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) is introduced in forecasting the cryptocurrency future price. It is part of Artificial Intelligence (AI) that uses previous experience to fore...

Full description

Saved in:
Bibliographic Details
Main Authors: Hitam, Nor Azizah, Ismail, Amelia Ritahani, Saeed, Faisal
Format: Conference or Workshop Item
Language:English
English
Published: Elsevier B.V. 2019
Subjects:
Online Access:http://irep.iium.edu.my/82311/1/82311_An%20Optimized%20Support%20Vector%20Machine.pdf
http://irep.iium.edu.my/82311/2/82311_An%20Optimized%20Support%20Vector%20Machine_SCOPUS.pdf
http://irep.iium.edu.my/82311/
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321647/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDwaCXVzLWVhc3QtMSJHMEUCIQDHFZCATHckZJuwzX8Ca7nB%2F18rIcE80SGryGhnau991gIgNVQf%2BVjRaTkl1MkGiPUQVdejqckS2S5Hms1epRLgEFIqtAMIJBADGgwwNTkwMDM1NDY4NjUiDEraxhRxVdkyrQfDrSqRAz4XPnabEfGLJEZ3SBMlKfN9jfdFevB2TtggXV2kxU3MlYh0lVr7VD0%2BeOyHR4GX3AexGpzGCaIKSeRQnDmX1GMaYBaPNL11RVwoFpXVuRxtuGTiQfrEREE3DEaFJCXyjsVvUj5mff%2FW7FWasl5p%2B%2FG6Fmw0w5FR7XiGnYUtdUwEhRW4NTGwhomshglHV%2FhdacpzasPyUuF50mwW9LedxuklVXFO2ph8hh5y291LWv50G88nEtMV4XvNLZhJYueNxVPRSJZFiVgSmSJQegswQK2Avz%2BjFTZ3am6dgTg4NkdonZ7kT1t5YQ7of5MrEedpbE2uKKpfaj3OPqMpg%2BROpSzY5dp5oBF%2Fnk%2BiBX45DhH%2F%2BNICgKaz9PVfgAzP8stALJbnoOBzVNYeqbSio5d1Ceu4TItqCjHzuPa%2FQ6RQwc6zokxw%2Fsul4%2FF4KApylAPy4CAvINPWdbU3HU3lS11F8caB6SKKmdCZxtRtx8LuUJ9al1vObQWrltu73VO4D7wtpxGDRdue%2BsQWU01clw3daBJqMKC18vkFOusBRYpq26TUEx04FoFUJQeGgNX4tyU50C3uQu4VqmKnQAcrEovIR0zT1SOX1tuBCvE6VJ7sqrR3ECsciBn8YFvV72MBWKGPtcdObZL89%2ByxR7P5s34jVPz85wUu23lqveoDCn4y2RBGvuLCMs%2Flx2TpKmtUKH4Gmv90oM5qBw6PlzXOIE8u0cZbN8Y%2FPMphbdbNysUPse%2FkA7JHyfruiSJX3Qnp9uqN4hBI7XUFXzhmGwvvcMfUSn3r3x%2Fy2bOCvWYwTfCxbSuFbTTSkV7H5GXHruvkEMlD%2BII1M%2FwiT26Rb%2FSCA9CpI8MWYkfXLQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200819T034335Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYTKKPECXM%2F20200819%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=278ee66d6dc088ab5cc93d115ff70cead6359b9c12af1ca1ffff0a5dace8b53d&hash=379fb566ae828c03e9063362a1af4c6d916587f71d52c5b31033fdfe61350041&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1877050919321647&tid=spdf-5492d721-e6c4-489e-9b6a-ef19715c6fd1&sid=31b360506464e244e74bc9e3fcc740864c2fgxrqa&type=client
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
English
id my.iium.irep.82311
record_format dspace
spelling my.iium.irep.823112020-08-19T03:54:09Z http://irep.iium.edu.my/82311/ An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting Hitam, Nor Azizah Ismail, Amelia Ritahani Saeed, Faisal T Technology (General) Forecasting accurate future price is very important in financial sector. An optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) is introduced in forecasting the cryptocurrency future price. It is part of Artificial Intelligence (AI) that uses previous experience to forecast future price. Analysts and investors generally combine fundamental and technical analysis prior to decide the best price to execute their trades. Some may use Machine Learning Algorithms to execute their trades. However, forecasting result using basic SVM algorithms does not really promising. On the other hands, Particle Swarm Optimization (PSO) is known as a better algorithm for a static and simple optimization problem. Therefore, PSO is introduced to optimize the algorithms of SVM in cryptocurrency forecasting. The experiment of selected cryptocurrencies is conducted for this classifier. The experimental result demonstrates that an optimized SVM-PSO algorithm can effectively forecast the future price of cryptocurrency thus outperforms the single SVM algorithms. © 2019 The Authors. Published by Elsevier B.V. Elsevier B.V. 2019 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/82311/1/82311_An%20Optimized%20Support%20Vector%20Machine.pdf application/pdf en http://irep.iium.edu.my/82311/2/82311_An%20Optimized%20Support%20Vector%20Machine_SCOPUS.pdf Hitam, Nor Azizah and Ismail, Amelia Ritahani and Saeed, Faisal (2019) An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting. In: 16th International Learning and Technology Conference, L and T 2019, 30th-31th January 2019, Effat University Jeddah, Saudi Arabia. https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321647/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDwaCXVzLWVhc3QtMSJHMEUCIQDHFZCATHckZJuwzX8Ca7nB%2F18rIcE80SGryGhnau991gIgNVQf%2BVjRaTkl1MkGiPUQVdejqckS2S5Hms1epRLgEFIqtAMIJBADGgwwNTkwMDM1NDY4NjUiDEraxhRxVdkyrQfDrSqRAz4XPnabEfGLJEZ3SBMlKfN9jfdFevB2TtggXV2kxU3MlYh0lVr7VD0%2BeOyHR4GX3AexGpzGCaIKSeRQnDmX1GMaYBaPNL11RVwoFpXVuRxtuGTiQfrEREE3DEaFJCXyjsVvUj5mff%2FW7FWasl5p%2B%2FG6Fmw0w5FR7XiGnYUtdUwEhRW4NTGwhomshglHV%2FhdacpzasPyUuF50mwW9LedxuklVXFO2ph8hh5y291LWv50G88nEtMV4XvNLZhJYueNxVPRSJZFiVgSmSJQegswQK2Avz%2BjFTZ3am6dgTg4NkdonZ7kT1t5YQ7of5MrEedpbE2uKKpfaj3OPqMpg%2BROpSzY5dp5oBF%2Fnk%2BiBX45DhH%2F%2BNICgKaz9PVfgAzP8stALJbnoOBzVNYeqbSio5d1Ceu4TItqCjHzuPa%2FQ6RQwc6zokxw%2Fsul4%2FF4KApylAPy4CAvINPWdbU3HU3lS11F8caB6SKKmdCZxtRtx8LuUJ9al1vObQWrltu73VO4D7wtpxGDRdue%2BsQWU01clw3daBJqMKC18vkFOusBRYpq26TUEx04FoFUJQeGgNX4tyU50C3uQu4VqmKnQAcrEovIR0zT1SOX1tuBCvE6VJ7sqrR3ECsciBn8YFvV72MBWKGPtcdObZL89%2ByxR7P5s34jVPz85wUu23lqveoDCn4y2RBGvuLCMs%2Flx2TpKmtUKH4Gmv90oM5qBw6PlzXOIE8u0cZbN8Y%2FPMphbdbNysUPse%2FkA7JHyfruiSJX3Qnp9uqN4hBI7XUFXzhmGwvvcMfUSn3r3x%2Fy2bOCvWYwTfCxbSuFbTTSkV7H5GXHruvkEMlD%2BII1M%2FwiT26Rb%2FSCA9CpI8MWYkfXLQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200819T034335Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYTKKPECXM%2F20200819%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=278ee66d6dc088ab5cc93d115ff70cead6359b9c12af1ca1ffff0a5dace8b53d&hash=379fb566ae828c03e9063362a1af4c6d916587f71d52c5b31033fdfe61350041&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1877050919321647&tid=spdf-5492d721-e6c4-489e-9b6a-ef19715c6fd1&sid=31b360506464e244e74bc9e3fcc740864c2fgxrqa&type=client 10.1016/j.procs.2019.12.125
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic T Technology (General)
spellingShingle T Technology (General)
Hitam, Nor Azizah
Ismail, Amelia Ritahani
Saeed, Faisal
An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
description Forecasting accurate future price is very important in financial sector. An optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) is introduced in forecasting the cryptocurrency future price. It is part of Artificial Intelligence (AI) that uses previous experience to forecast future price. Analysts and investors generally combine fundamental and technical analysis prior to decide the best price to execute their trades. Some may use Machine Learning Algorithms to execute their trades. However, forecasting result using basic SVM algorithms does not really promising. On the other hands, Particle Swarm Optimization (PSO) is known as a better algorithm for a static and simple optimization problem. Therefore, PSO is introduced to optimize the algorithms of SVM in cryptocurrency forecasting. The experiment of selected cryptocurrencies is conducted for this classifier. The experimental result demonstrates that an optimized SVM-PSO algorithm can effectively forecast the future price of cryptocurrency thus outperforms the single SVM algorithms. © 2019 The Authors. Published by Elsevier B.V.
format Conference or Workshop Item
author Hitam, Nor Azizah
Ismail, Amelia Ritahani
Saeed, Faisal
author_facet Hitam, Nor Azizah
Ismail, Amelia Ritahani
Saeed, Faisal
author_sort Hitam, Nor Azizah
title An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
title_short An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
title_full An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
title_fullStr An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
title_full_unstemmed An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for cryptocurrency forecasting
title_sort optimized support vector machine (svm) based on particle swarm optimization (pso) for cryptocurrency forecasting
publisher Elsevier B.V.
publishDate 2019
url http://irep.iium.edu.my/82311/1/82311_An%20Optimized%20Support%20Vector%20Machine.pdf
http://irep.iium.edu.my/82311/2/82311_An%20Optimized%20Support%20Vector%20Machine_SCOPUS.pdf
http://irep.iium.edu.my/82311/
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321647/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDwaCXVzLWVhc3QtMSJHMEUCIQDHFZCATHckZJuwzX8Ca7nB%2F18rIcE80SGryGhnau991gIgNVQf%2BVjRaTkl1MkGiPUQVdejqckS2S5Hms1epRLgEFIqtAMIJBADGgwwNTkwMDM1NDY4NjUiDEraxhRxVdkyrQfDrSqRAz4XPnabEfGLJEZ3SBMlKfN9jfdFevB2TtggXV2kxU3MlYh0lVr7VD0%2BeOyHR4GX3AexGpzGCaIKSeRQnDmX1GMaYBaPNL11RVwoFpXVuRxtuGTiQfrEREE3DEaFJCXyjsVvUj5mff%2FW7FWasl5p%2B%2FG6Fmw0w5FR7XiGnYUtdUwEhRW4NTGwhomshglHV%2FhdacpzasPyUuF50mwW9LedxuklVXFO2ph8hh5y291LWv50G88nEtMV4XvNLZhJYueNxVPRSJZFiVgSmSJQegswQK2Avz%2BjFTZ3am6dgTg4NkdonZ7kT1t5YQ7of5MrEedpbE2uKKpfaj3OPqMpg%2BROpSzY5dp5oBF%2Fnk%2BiBX45DhH%2F%2BNICgKaz9PVfgAzP8stALJbnoOBzVNYeqbSio5d1Ceu4TItqCjHzuPa%2FQ6RQwc6zokxw%2Fsul4%2FF4KApylAPy4CAvINPWdbU3HU3lS11F8caB6SKKmdCZxtRtx8LuUJ9al1vObQWrltu73VO4D7wtpxGDRdue%2BsQWU01clw3daBJqMKC18vkFOusBRYpq26TUEx04FoFUJQeGgNX4tyU50C3uQu4VqmKnQAcrEovIR0zT1SOX1tuBCvE6VJ7sqrR3ECsciBn8YFvV72MBWKGPtcdObZL89%2ByxR7P5s34jVPz85wUu23lqveoDCn4y2RBGvuLCMs%2Flx2TpKmtUKH4Gmv90oM5qBw6PlzXOIE8u0cZbN8Y%2FPMphbdbNysUPse%2FkA7JHyfruiSJX3Qnp9uqN4hBI7XUFXzhmGwvvcMfUSn3r3x%2Fy2bOCvWYwTfCxbSuFbTTSkV7H5GXHruvkEMlD%2BII1M%2FwiT26Rb%2FSCA9CpI8MWYkfXLQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200819T034335Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYTKKPECXM%2F20200819%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=278ee66d6dc088ab5cc93d115ff70cead6359b9c12af1ca1ffff0a5dace8b53d&hash=379fb566ae828c03e9063362a1af4c6d916587f71d52c5b31033fdfe61350041&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1877050919321647&tid=spdf-5492d721-e6c4-489e-9b6a-ef19715c6fd1&sid=31b360506464e244e74bc9e3fcc740864c2fgxrqa&type=client
_version_ 1677780697643745280