Potential bioactive coating system for high-performance absorbable magnesium bone implants
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their c...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
KeAi Communications Co
2022
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/97914/7/97914_Potential%20bioactive%20coating%20system%20for%20high-performance%20absorbable%20magnesium.pdf http://irep.iium.edu.my/97914/8/97914_Potential%20bioactive%20coating%20system%20for%20high-performance_SCOPUS.pdf http://irep.iium.edu.my/97914/ https://www.sciencedirect.com/science/article/pii/S2452199X21005004/pdfft?md5=ac946ceda946c7ccb70e08f3c0a8f40c&pid=1-s2.0-S2452199X21005004-main.pdf https://doi.org/10.1016/j.bioactmat.2021.10.034 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English English |
Summary: | Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. |
---|