The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.]
The unregulated discharge of pollutants into water bodies has become an issue that led to pollution. Fiber derived from various forms of agricultural wastes as the sorbent is widely used as it has a high sorption capacity and efficiency. It is environmentally friendly and could be cost-effective as...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universiti Teknologi MARA, Sarawak
2024
|
Subjects: | |
Online Access: | https://ir.uitm.edu.my/id/eprint/105193/1/105193.pdf https://ir.uitm.edu.my/id/eprint/105193/ https://jsst.uitm.edu.my/index.php/jsst |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Mara |
Language: | English |
id |
my.uitm.ir.105193 |
---|---|
record_format |
eprints |
spelling |
my.uitm.ir.1051932024-10-24T04:48:20Z https://ir.uitm.edu.my/id/eprint/105193/ The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] jsst Ni, Rabuyah Mustapha Kamal, Abdul Somad Shah Jahan, Shahrina Ismail, Siti Hajijah Ramji, Harunal Rejan Agriculture and the environment Oils, fats, and waxes The unregulated discharge of pollutants into water bodies has become an issue that led to pollution. Fiber derived from various forms of agricultural wastes as the sorbent is widely used as it has a high sorption capacity and efficiency. It is environmentally friendly and could be cost-effective as it only utilizes the unwanted parts of plants, which usually would otherwise be discarded. The pineapple crown leaf (PCL) and other plants with high cellulose content have the potential for environmental applications. Oil pollutants, particularly waste cooking oil (WCO) from the food and beverage industry, often contaminate water bodies due to poor waste management. Using cellulose-rich plants like PCL could offer an effective solution for absorbing these pollutants. This study examines the characteristics and sorption capacities of raw, NaOH-treatment PCL, and carbonized PCL to develop an effective, eco-friendly method for oil spill remediation. The methodology involves washing, drying, grinding, and sieving PCL to obtain a powdered PCL. Then, raw PCL (RPCL) undergoes chemical treatment with 10% sodium hydroxide, NaOH and thermal treatment at 300 °C. The raw and treated PCL were characterized using Fourier Transform Infrared Spectroscopy (FTIR). The elimination of some non-cellulosic components in NaOH-treatment PCL (CPCL) and carbonized PCL (TPCL) observed in the FTIR spectrum would contribute to higher sorption efficiency and capacity of WCO. In agreement with the results from FTIR analysis, the highest sorption efficiency in pure oil was shown by TPCL at 33% and CPCL in slick oil at 16.33%. The highest value for pure and slick oil recorded for sorption capacity was 9.23 g g−1 from TPCL samples and 4.3 g g−1 from CPCL samples. This study supports sustainable waste management and green technology for environmental remediation, highlighting PCL's potential in mitigating oil pollution and the value of agricultural waste in creating eco-friendly solutions for oil disposal challenges. Universiti Teknologi MARA, Sarawak 2024-09-30 Article PeerReviewed text en https://ir.uitm.edu.my/id/eprint/105193/1/105193.pdf The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.]. (2024) Journal of Smart Science and Technology <https://ir.uitm.edu.my/view/publication/Journal_of_Smart_Science_and_Technology/>, 4 (2): 4. pp. 47-53. ISSN 2785-924X https://jsst.uitm.edu.my/index.php/jsst 10.24191/jsst.v4i2.89 10.24191/jsst.v4i2.89 10.24191/jsst.v4i2.89 |
institution |
Universiti Teknologi Mara |
building |
Tun Abdul Razak Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Mara |
content_source |
UiTM Institutional Repository |
url_provider |
http://ir.uitm.edu.my/ |
language |
English |
topic |
Agriculture and the environment Oils, fats, and waxes |
spellingShingle |
Agriculture and the environment Oils, fats, and waxes Ni, Rabuyah Mustapha Kamal, Abdul Somad Shah Jahan, Shahrina Ismail, Siti Hajijah Ramji, Harunal Rejan The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
description |
The unregulated discharge of pollutants into water bodies has become an issue that led to pollution. Fiber derived from various forms of agricultural wastes as the sorbent is widely used as it has a high sorption capacity and efficiency. It is environmentally friendly and could be cost-effective as it only utilizes the unwanted parts of plants, which usually would otherwise be discarded. The pineapple crown leaf (PCL) and other plants with high cellulose content have the potential for environmental applications. Oil pollutants, particularly waste cooking oil (WCO) from the food and beverage industry, often contaminate water bodies due to poor waste management. Using cellulose-rich plants like PCL could offer an effective solution for absorbing these pollutants. This study examines the characteristics and sorption capacities of raw, NaOH-treatment PCL, and carbonized PCL to develop an effective, eco-friendly method for oil spill remediation. The methodology involves washing, drying, grinding, and sieving PCL to obtain a powdered PCL. Then, raw PCL (RPCL) undergoes chemical treatment with 10% sodium hydroxide, NaOH and thermal treatment at 300 °C. The raw and treated PCL were characterized using Fourier Transform Infrared Spectroscopy (FTIR). The elimination of some non-cellulosic components in NaOH-treatment PCL (CPCL) and carbonized PCL (TPCL) observed in the FTIR spectrum would contribute to higher sorption efficiency and capacity of WCO. In agreement with the results from FTIR analysis, the highest sorption efficiency in pure oil was shown by TPCL at 33% and CPCL in slick oil at 16.33%. The highest value for pure and slick oil recorded for sorption capacity was 9.23 g g−1 from TPCL samples and 4.3 g g−1 from CPCL samples. This study supports sustainable waste management and green technology for environmental remediation, highlighting PCL's potential in mitigating oil pollution and the value of agricultural waste in creating eco-friendly solutions for oil disposal challenges. |
format |
Article |
author |
Ni, Rabuyah Mustapha Kamal, Abdul Somad Shah Jahan, Shahrina Ismail, Siti Hajijah Ramji, Harunal Rejan |
author_facet |
Ni, Rabuyah Mustapha Kamal, Abdul Somad Shah Jahan, Shahrina Ismail, Siti Hajijah Ramji, Harunal Rejan |
author_sort |
Ni, Rabuyah |
title |
The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
title_short |
The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
title_full |
The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
title_fullStr |
The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
title_full_unstemmed |
The sorption studies of waste cooking oil using raw and treated pineapple crown leaf / Rabuyah Ni ... [et al.] |
title_sort |
sorption studies of waste cooking oil using raw and treated pineapple crown leaf / rabuyah ni ... [et al.] |
publisher |
Universiti Teknologi MARA, Sarawak |
publishDate |
2024 |
url |
https://ir.uitm.edu.my/id/eprint/105193/1/105193.pdf https://ir.uitm.edu.my/id/eprint/105193/ https://jsst.uitm.edu.my/index.php/jsst |
_version_ |
1814058665002401792 |