Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli

A good management of oil palm plantation become a growing concern as the demand on oil palm is increasing. The farmers need a high technological system that can make it easier to identify the number of oil palm in the plantation for the fertilizers and prediction of yield. There is already manual...

Full description

Saved in:
Bibliographic Details
Main Author: Sazeli, Fairuz Maizan
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://ir.uitm.edu.my/id/eprint/24511/1/TD_FAIRUZ%20MAIZAN%20SAZELI%20AP%20R%2019_5.PDF
http://ir.uitm.edu.my/id/eprint/24511/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.24511
record_format eprints
spelling my.uitm.ir.245112019-06-20T04:27:03Z http://ir.uitm.edu.my/id/eprint/24511/ Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli Sazeli, Fairuz Maizan Global Positioning System Geographic information systems Large farms. Plantations A good management of oil palm plantation become a growing concern as the demand on oil palm is increasing. The farmers need a high technological system that can make it easier to identify the number of oil palm in the plantation for the fertilizers and prediction of yield. There is already manual technique and automation technique in determining the number of oil palm trees exist but the manual technique is time consuming and more expensive. The existence of automation method has not been widely known by the farmers and the accuracy is not yet been verified. Therefore, the accuracy of automation technique should be verified as it can be beneficial to the agriculture sector. This research aim is to identify the accuracy of automation method in oil palm tree counting by using the result from manual digitizing as a verification subject to the automation technique. The data used in this research which is UAV imagery data has been obtained from Braintree company. This data is suitable to be used in this project as it provides high spatial resolution where the trees can be identified easily. The result analyzes whether the accuracy of automation method by manipulating five different threshold values approximately same as the accuracy of manual method. It is suggested that the result of one of the threshold value in the automation method has a high accuracy and can be used for oil palm tree counting. 2019-06-20 Thesis NonPeerReviewed text en http://ir.uitm.edu.my/id/eprint/24511/1/TD_FAIRUZ%20MAIZAN%20SAZELI%20AP%20R%2019_5.PDF Sazeli, Fairuz Maizan (2019) Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli. Degree thesis, Universiti Teknologi Mara Perlis.
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Global Positioning System
Geographic information systems
Large farms. Plantations
spellingShingle Global Positioning System
Geographic information systems
Large farms. Plantations
Sazeli, Fairuz Maizan
Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
description A good management of oil palm plantation become a growing concern as the demand on oil palm is increasing. The farmers need a high technological system that can make it easier to identify the number of oil palm in the plantation for the fertilizers and prediction of yield. There is already manual technique and automation technique in determining the number of oil palm trees exist but the manual technique is time consuming and more expensive. The existence of automation method has not been widely known by the farmers and the accuracy is not yet been verified. Therefore, the accuracy of automation technique should be verified as it can be beneficial to the agriculture sector. This research aim is to identify the accuracy of automation method in oil palm tree counting by using the result from manual digitizing as a verification subject to the automation technique. The data used in this research which is UAV imagery data has been obtained from Braintree company. This data is suitable to be used in this project as it provides high spatial resolution where the trees can be identified easily. The result analyzes whether the accuracy of automation method by manipulating five different threshold values approximately same as the accuracy of manual method. It is suggested that the result of one of the threshold value in the automation method has a high accuracy and can be used for oil palm tree counting.
format Thesis
author Sazeli, Fairuz Maizan
author_facet Sazeli, Fairuz Maizan
author_sort Sazeli, Fairuz Maizan
title Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
title_short Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
title_full Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
title_fullStr Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
title_full_unstemmed Accuracy assessment of automation oil palm tree counting using ecognition based of UAV imagery / Fairuz Maizan Sazeli
title_sort accuracy assessment of automation oil palm tree counting using ecognition based of uav imagery / fairuz maizan sazeli
publishDate 2019
url http://ir.uitm.edu.my/id/eprint/24511/1/TD_FAIRUZ%20MAIZAN%20SAZELI%20AP%20R%2019_5.PDF
http://ir.uitm.edu.my/id/eprint/24511/
_version_ 1685649868869074944