Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib
Pendiskritan data merupakan kaedah pra-pemprosesan yang penting dalam membangunkan model pengelasan. Teknik pendiskritan data digunakan untuk menukarkan atribut selanjar kepada atribut diskrit. Ia sangat penting dalam membangunkan model berasaskan petua seperti pepohon keputusan dan set kasar. Pengg...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Universiti Teknologi MARA, Perlis
2010
|
Subjects: | |
Online Access: | http://ir.uitm.edu.my/id/eprint/32042/1/32042.pdf http://ir.uitm.edu.my/id/eprint/32042/ https://jurnalintelek.uitm.edu.my/index.php/main |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Mara |
Language: | English |
id |
my.uitm.ir.32042 |
---|---|
record_format |
eprints |
spelling |
my.uitm.ir.320422020-07-08T05:31:24Z http://ir.uitm.edu.my/id/eprint/32042/ Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib Mohd Shuib, Nor Liyana Electronic Computers. Computer Science Data mining Pendiskritan data merupakan kaedah pra-pemprosesan yang penting dalam membangunkan model pengelasan. Teknik pendiskritan data digunakan untuk menukarkan atribut selanjar kepada atribut diskrit. Ia sangat penting dalam membangunkan model berasaskan petua seperti pepohon keputusan dan set kasar. Penggunaan teknik pendiskritan dapat meningkatkan ketepatan pengelas dan menjadikan pembelajaran lebih tepat dan laju. Objektif kajian ini ialah untuk mengaplikasikan teknik pendiskritan data yang terpilih ke atas empat set data daripada UCI Machine Learning dan membuat perbandingan prestasi berdasarkan ketepatan pengelas, bilangan petua dan panjang petua. Teknik pendiskritan yang digunakan ialah teknik Taakulan Boolean, Equal Frequency Binning dan Entropi. Setiap teknik ini diaplikasikan ke atas empat set data dari domain yang berbeza untuk mendapatkan satu teknik yang terbaik. Set data tersebut ialah Iris, Glass, Pima dan Wine. Model pengelasan perlombongan data dibangunkan menggunakan kaedah pengelas set kasar melalui beberapa proses seperti pra-pemprosesan data, pembahagian set data latihan dan ujian, perlombongan data, pengujian dan perbandingan. Satu analisis perbandingan ke atas teknik pendiskritan yang digunakan dihasilkan. Hasil analisis mendapati penggunaan teknik Taakulan Boolean menggeneralisasikan purata ketepatan yang tertinggi jika dibandingkan dengan dua teknik yang lain. Universiti Teknologi MARA, Perlis 2010-12 Article PeerReviewed text en http://ir.uitm.edu.my/id/eprint/32042/1/32042.pdf Mohd Shuib, Nor Liyana (2010) Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib. Jurnal Intelek, 5 (2). ISSN 2231-7716 https://jurnalintelek.uitm.edu.my/index.php/main |
institution |
Universiti Teknologi Mara |
building |
Tun Abdul Razak Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Mara |
content_source |
UiTM Institutional Repository |
url_provider |
http://ir.uitm.edu.my/ |
language |
English |
topic |
Electronic Computers. Computer Science Data mining |
spellingShingle |
Electronic Computers. Computer Science Data mining Mohd Shuib, Nor Liyana Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
description |
Pendiskritan data merupakan kaedah pra-pemprosesan yang penting dalam membangunkan model pengelasan. Teknik pendiskritan data digunakan untuk menukarkan atribut selanjar kepada atribut diskrit. Ia sangat penting dalam membangunkan model berasaskan petua seperti pepohon keputusan dan set kasar. Penggunaan teknik pendiskritan dapat meningkatkan ketepatan pengelas dan menjadikan pembelajaran lebih tepat dan laju. Objektif kajian ini ialah untuk mengaplikasikan teknik pendiskritan data yang terpilih ke atas empat set data daripada UCI Machine Learning dan membuat perbandingan prestasi berdasarkan ketepatan pengelas, bilangan petua dan panjang petua. Teknik pendiskritan yang digunakan ialah teknik Taakulan Boolean, Equal Frequency Binning dan Entropi. Setiap teknik ini diaplikasikan ke atas empat set data dari domain yang berbeza untuk mendapatkan satu teknik yang terbaik. Set data tersebut ialah Iris, Glass, Pima dan Wine. Model pengelasan perlombongan data dibangunkan menggunakan kaedah pengelas set kasar melalui beberapa proses seperti pra-pemprosesan data, pembahagian set data latihan dan ujian, perlombongan data, pengujian dan perbandingan. Satu analisis perbandingan ke atas teknik pendiskritan yang digunakan dihasilkan. Hasil analisis mendapati penggunaan teknik Taakulan Boolean menggeneralisasikan purata ketepatan yang tertinggi jika dibandingkan dengan dua teknik yang lain. |
format |
Article |
author |
Mohd Shuib, Nor Liyana |
author_facet |
Mohd Shuib, Nor Liyana |
author_sort |
Mohd Shuib, Nor Liyana |
title |
Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
title_short |
Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
title_full |
Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
title_fullStr |
Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
title_full_unstemmed |
Aplikasi teknik pendiskritan dalam perlombongan data / Nor Liyana Mohd Shuib |
title_sort |
aplikasi teknik pendiskritan dalam perlombongan data / nor liyana mohd shuib |
publisher |
Universiti Teknologi MARA, Perlis |
publishDate |
2010 |
url |
http://ir.uitm.edu.my/id/eprint/32042/1/32042.pdf http://ir.uitm.edu.my/id/eprint/32042/ https://jurnalintelek.uitm.edu.my/index.php/main |
_version_ |
1685650870850551808 |