Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil

Medical images are important towards diagnosing various medical condition in human bodies. Medical image data contains valuable information that can be utilized by medical expert. The information inside the images however requires the process of segmentation where the portion of the image is segment...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad Fadzil, Ahmad Firdaus
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/60911/1/60911.pdf
https://ir.uitm.edu.my/id/eprint/60911/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.60911
record_format eprints
spelling my.uitm.ir.609112024-05-10T00:39:17Z https://ir.uitm.edu.my/id/eprint/60911/ Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil Ahmad Fadzil, Ahmad Firdaus Neural networks (Computer science) Medical technology Medical images are important towards diagnosing various medical condition in human bodies. Medical image data contains valuable information that can be utilized by medical expert. The information inside the images however requires the process of segmentation where the portion of the image is segmented for further investigations. This process however proves to be a very challenging task due to large variations of pixel features in medical images. Therefore, developing a segmentation model that can provide automatic yet efficient segmentation towards the images is essential. Deep Neural Network (DNN) particularly the Convolutional Neural Network (CNN) has demonstrated to be able to produce efficient segmentation towards medical imaging. This approach however is very demanding in terms of the training time and processing resource required to train the model due to the employment of CNN structures that requires the spatial relations between individual pixels to be exhaustively processed. In addition, CNN also requires large datasets to train and test its neural network. The CNN structures depend on the input of images via the conventional image representation such as bitmap of 3x3 dimensions. Therefore, this research proposes the employment of Object-oriented Programming (OOP) paradigm of describing the image dataset via Object-oriented Pixel Descriptor (OOPD). This is done to amplify the amount of information contain within an image to provide more depth towards the pixel data in medical images. This approach is then complemented with deep neural network to train the Object-oriented Deep Neural Network (OODNN) segmentation model. To evaluate the proposed approach, three different medical image datasets are employed; brain Magnetic Resonance Image (MRI), retinal fundus, and cells histopathology. These datasets are trained using only 10 images from each dataset to investigate the performance of the proposed approach under low dataset count. The proposed approach is evaluated in terms of training performance (training time and accuracy and loss) and segmentation performance via Receiver Operating Characteristic (ROC) confusion matrix using 20 data from each dataset. To generate an in-depth performance analysis, three recent state-of-the-art CNN-based segmentation model using different variations of backbone/encoder model is also trained and evaluated using the same parameter as the proposed approach. For all three datasets, OODNN shows that it can provide efficient segmentation with the overall figure of 0.771 balanced accuracy comparable to recent state-of-the-art CNN-based segmentation model but with significantly less amount of training time and computing resource under low training dataset count. 2021 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/60911/1/60911.pdf Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil. (2021) PhD thesis, thesis, Universiti Teknologi MARA. <http://terminalib.uitm.edu.my/60911.pdf>
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Neural networks (Computer science)
Medical technology
spellingShingle Neural networks (Computer science)
Medical technology
Ahmad Fadzil, Ahmad Firdaus
Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
description Medical images are important towards diagnosing various medical condition in human bodies. Medical image data contains valuable information that can be utilized by medical expert. The information inside the images however requires the process of segmentation where the portion of the image is segmented for further investigations. This process however proves to be a very challenging task due to large variations of pixel features in medical images. Therefore, developing a segmentation model that can provide automatic yet efficient segmentation towards the images is essential. Deep Neural Network (DNN) particularly the Convolutional Neural Network (CNN) has demonstrated to be able to produce efficient segmentation towards medical imaging. This approach however is very demanding in terms of the training time and processing resource required to train the model due to the employment of CNN structures that requires the spatial relations between individual pixels to be exhaustively processed. In addition, CNN also requires large datasets to train and test its neural network. The CNN structures depend on the input of images via the conventional image representation such as bitmap of 3x3 dimensions. Therefore, this research proposes the employment of Object-oriented Programming (OOP) paradigm of describing the image dataset via Object-oriented Pixel Descriptor (OOPD). This is done to amplify the amount of information contain within an image to provide more depth towards the pixel data in medical images. This approach is then complemented with deep neural network to train the Object-oriented Deep Neural Network (OODNN) segmentation model. To evaluate the proposed approach, three different medical image datasets are employed; brain Magnetic Resonance Image (MRI), retinal fundus, and cells histopathology. These datasets are trained using only 10 images from each dataset to investigate the performance of the proposed approach under low dataset count. The proposed approach is evaluated in terms of training performance (training time and accuracy and loss) and segmentation performance via Receiver Operating Characteristic (ROC) confusion matrix using 20 data from each dataset. To generate an in-depth performance analysis, three recent state-of-the-art CNN-based segmentation model using different variations of backbone/encoder model is also trained and evaluated using the same parameter as the proposed approach. For all three datasets, OODNN shows that it can provide efficient segmentation with the overall figure of 0.771 balanced accuracy comparable to recent state-of-the-art CNN-based segmentation model but with significantly less amount of training time and computing resource under low training dataset count.
format Thesis
author Ahmad Fadzil, Ahmad Firdaus
author_facet Ahmad Fadzil, Ahmad Firdaus
author_sort Ahmad Fadzil, Ahmad Firdaus
title Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
title_short Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
title_full Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
title_fullStr Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
title_full_unstemmed Object-oriented deep neural network segmentation for medical images / Ahmad Firdaus Ahmad Fadzil
title_sort object-oriented deep neural network segmentation for medical images / ahmad firdaus ahmad fadzil
publishDate 2021
url https://ir.uitm.edu.my/id/eprint/60911/1/60911.pdf
https://ir.uitm.edu.my/id/eprint/60911/
_version_ 1800100545918140416