An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly

Malaysia experiences transboundary haze episodes in which the air contains particulate matter (PM) that is harmful to human health and the environment. Therefore, the main prediction model used in this study is Boosted Regression Trees (BRT) to predict three days ahead of PM10 concentration. However...

Full description

Saved in:
Bibliographic Details
Main Author: Wan Mohd Rosly, Wan Nur Shaziayani
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/66923/1/66923.pdf
https://ir.uitm.edu.my/id/eprint/66923/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.66923
record_format eprints
spelling my.uitm.ir.669232023-05-16T07:53:54Z https://ir.uitm.edu.my/id/eprint/66923/ An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly Wan Mohd Rosly, Wan Nur Shaziayani Atmospheric temperature Malaysia experiences transboundary haze episodes in which the air contains particulate matter (PM) that is harmful to human health and the environment. Therefore, the main prediction model used in this study is Boosted Regression Trees (BRT) to predict three days ahead of PM10 concentration. However, the main problem with the common BRT technique is that it is not suitable for use in predicting extreme values of PM10 concentration levels. Besides, the problem with BRT is that overfitting can occur if the number of trees is not suitable and also because of the complexity of the model, which is caused by the unsuitable number of predictor variables used in the model. Therefore, the aim of this study is to enhance the BRT model with Quantile Regression (QR) and Support Vector Machine (SVM) weight. This study used maximum daily monitoring records from 2002 to 2017 in Alor Setar, Klang, and Kuching which were analysed using four models: a boosted regression tree (BRT) model, a BRT with QR loss function model and a hybrid model between SVM and BRT with and without QR loss function. In order to get the best prediction model and to avoid over-fitting, the number of trees (nt) was optimized by using independent test set (TEST), cross validation (CV) and out of bag estimation (OOB). Then, to solve the extreme value issue in BRT, this study used the QR loss function rather than the Ordinary Least Square (OLS) loss function, since QR is more resistant to outliers. Meanwhile, the model then evaluated and the best method for predicting PM10 concentration was selected based on the lowest error and highest accuracy values. 2022 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/66923/1/66923.pdf An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly. (2022) PhD thesis, thesis, Universiti Teknologi MARA (UiTM). <http://terminalib.uitm.edu.my/66923.pdf>
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Atmospheric temperature
spellingShingle Atmospheric temperature
Wan Mohd Rosly, Wan Nur Shaziayani
An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
description Malaysia experiences transboundary haze episodes in which the air contains particulate matter (PM) that is harmful to human health and the environment. Therefore, the main prediction model used in this study is Boosted Regression Trees (BRT) to predict three days ahead of PM10 concentration. However, the main problem with the common BRT technique is that it is not suitable for use in predicting extreme values of PM10 concentration levels. Besides, the problem with BRT is that overfitting can occur if the number of trees is not suitable and also because of the complexity of the model, which is caused by the unsuitable number of predictor variables used in the model. Therefore, the aim of this study is to enhance the BRT model with Quantile Regression (QR) and Support Vector Machine (SVM) weight. This study used maximum daily monitoring records from 2002 to 2017 in Alor Setar, Klang, and Kuching which were analysed using four models: a boosted regression tree (BRT) model, a BRT with QR loss function model and a hybrid model between SVM and BRT with and without QR loss function. In order to get the best prediction model and to avoid over-fitting, the number of trees (nt) was optimized by using independent test set (TEST), cross validation (CV) and out of bag estimation (OOB). Then, to solve the extreme value issue in BRT, this study used the QR loss function rather than the Ordinary Least Square (OLS) loss function, since QR is more resistant to outliers. Meanwhile, the model then evaluated and the best method for predicting PM10 concentration was selected based on the lowest error and highest accuracy values.
format Thesis
author Wan Mohd Rosly, Wan Nur Shaziayani
author_facet Wan Mohd Rosly, Wan Nur Shaziayani
author_sort Wan Mohd Rosly, Wan Nur Shaziayani
title An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
title_short An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
title_full An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
title_fullStr An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
title_full_unstemmed An enhanced boosted regression tree model for the prediction of PM10 concentration level using SVM_BRT with QR loss function coupling approach / Wan Nur Shaziayani Wan Mohd Rosly
title_sort enhanced boosted regression tree model for the prediction of pm10 concentration level using svm_brt with qr loss function coupling approach / wan nur shaziayani wan mohd rosly
publishDate 2022
url https://ir.uitm.edu.my/id/eprint/66923/1/66923.pdf
https://ir.uitm.edu.my/id/eprint/66923/
_version_ 1768011497704783872