Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar

Degradable plastic is produced by combining different percentages of additives such as oil palm biomass (OPB), palm oil (PO) and starch with polyethylene (PE). Currently, experiments are carried out in laboratories to determine the formulation of degradable plastics with the most bioactive component...

Full description

Saved in:
Bibliographic Details
Main Author: Abu Bakar, Syamsiah
Format: Thesis
Language:English
Published: 2012
Online Access:https://ir.uitm.edu.my/id/eprint/79013/1/79013.pdf
https://ir.uitm.edu.my/id/eprint/79013/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.79013
record_format eprints
spelling my.uitm.ir.790132023-09-12T06:43:56Z https://ir.uitm.edu.my/id/eprint/79013/ Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar Abu Bakar, Syamsiah Degradable plastic is produced by combining different percentages of additives such as oil palm biomass (OPB), palm oil (PO) and starch with polyethylene (PE). Currently, experiments are carried out in laboratories to determine the formulation of degradable plastics with the most bioactive components and desirable physical properties measured by melt How index (MFI), melting point (MP) and density. The procedure is time consuming and costly. Therefore, a different approach is required to minimize the time consumption, production cost and labour cost. In this research, an Adaptive Neuro-Fuzzy Inference System (ANFIS) and linear regression (LR) models have been developed and utilized to predict the physical properties of degradable plastics. The prediction accuracy of ANFIS and LR models are assessed by comparing simulated results with the actual lab results using root mean square error (RMSE), correlation coefficient (/?), coefficient of determination (R2 ) and adjusted R square (R2 ). ANFIS and LR models are found to have compatible prediction performances. The findings show that ANFIS model is capable of determining the desirable input-output relationships in degradable plastic production as reflected by the small RMSE values, high R and R2 values. Furthermore the difference between R2 and R2 values is small which indicates that the addition of new variable does not contribute to the over fitting of ANFIS model. It was also found that different membership functions used in ANFIS has an impact on ANFIS prediction performance. The developed ANFIS model can be used as a guide for the production of degradable plastic with some intended physical requirements. 2012 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/79013/1/79013.pdf Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar. (2012) Masters thesis, thesis, Universiti Teknologi MARA (UiTM).
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
description Degradable plastic is produced by combining different percentages of additives such as oil palm biomass (OPB), palm oil (PO) and starch with polyethylene (PE). Currently, experiments are carried out in laboratories to determine the formulation of degradable plastics with the most bioactive components and desirable physical properties measured by melt How index (MFI), melting point (MP) and density. The procedure is time consuming and costly. Therefore, a different approach is required to minimize the time consumption, production cost and labour cost. In this research, an Adaptive Neuro-Fuzzy Inference System (ANFIS) and linear regression (LR) models have been developed and utilized to predict the physical properties of degradable plastics. The prediction accuracy of ANFIS and LR models are assessed by comparing simulated results with the actual lab results using root mean square error (RMSE), correlation coefficient (/?), coefficient of determination (R2 ) and adjusted R square (R2 ). ANFIS and LR models are found to have compatible prediction performances. The findings show that ANFIS model is capable of determining the desirable input-output relationships in degradable plastic production as reflected by the small RMSE values, high R and R2 values. Furthermore the difference between R2 and R2 values is small which indicates that the addition of new variable does not contribute to the over fitting of ANFIS model. It was also found that different membership functions used in ANFIS has an impact on ANFIS prediction performance. The developed ANFIS model can be used as a guide for the production of degradable plastic with some intended physical requirements.
format Thesis
author Abu Bakar, Syamsiah
spellingShingle Abu Bakar, Syamsiah
Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
author_facet Abu Bakar, Syamsiah
author_sort Abu Bakar, Syamsiah
title Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
title_short Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
title_full Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
title_fullStr Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
title_full_unstemmed Prediction of the physical properties of degradable plastics using ANFIS / Syamsiah Abu Bakar
title_sort prediction of the physical properties of degradable plastics using anfis / syamsiah abu bakar
publishDate 2012
url https://ir.uitm.edu.my/id/eprint/79013/1/79013.pdf
https://ir.uitm.edu.my/id/eprint/79013/
_version_ 1778165879855382528