Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim

The depletion of fossil fuel and climate change challenge has gathered worldwide effort to develop sustainable energy systems. Several issues such as energy efficiency, environmental impact and security of supply are the major concerns when dealing with the DG installation. As a result, the penetrat...

Full description

Saved in:
Bibliographic Details
Main Author: Abdul Rahim, Siti Rafidah
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/82243/1/82243.pdf
https://ir.uitm.edu.my/id/eprint/82243/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.82243
record_format eprints
spelling my.uitm.ir.822432024-01-29T04:16:45Z https://ir.uitm.edu.my/id/eprint/82243/ Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim Abdul Rahim, Siti Rafidah Fuel The depletion of fossil fuel and climate change challenge has gathered worldwide effort to develop sustainable energy systems. Several issues such as energy efficiency, environmental impact and security of supply are the major concerns when dealing with the DG installation. As a result, the penetration of DG in the electricity network will increase and may affect the system. In light of this, various forms of Distributed Generation (DG) technologies have been connected to the system, either to the transmission or distribution system. The installation of DG requires optimisation process to identify the correct location and sizing. Improper sizing and location of DG installation may result to overcompensation or under compensation. Most optimisation techniques are found to face inaccurate and stucked at local minimum phenomena with computationally burdensome. Thus, a reliable optimisation technique is crucial to address this issue. This thesis presents a novel Embedded Meta Evolutionary–Firefly Algorithm-Artificial Neural Network for Multi-DG planning in distribution system. In this study, Meta Evolutionary–Firefly Algorithm (EMEFA) was initially developed to expedite the computational time in multi-DG installation with improved accuracy. Optimal location and sizing are determined using the proposed EMEFA technique. Consequently, a new clustering technique was developed to categorise the DG placement in accordance with different DG types and DG models. Load in the distribution system is divided into three categories i.e. residential, commercial and industrial. These three load types are voltage dependent, and active and reactive power components respond differently to variations in voltage. The voltage dependent load has a main impact on distribution system planning studies. In achieving optimal allocation of DG, two techniques were proposed to study the DG planning which is the ranking identification for DG installation and the integrated clustering development and pre-developed EMEFA was employed. 2019 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/82243/1/82243.pdf Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim. (2019) PhD thesis, thesis, Universiti Teknologi MARA (UiTM). <http://terminalib.uitm.edu.my/82243.pdf>
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Fuel
spellingShingle Fuel
Abdul Rahim, Siti Rafidah
Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
description The depletion of fossil fuel and climate change challenge has gathered worldwide effort to develop sustainable energy systems. Several issues such as energy efficiency, environmental impact and security of supply are the major concerns when dealing with the DG installation. As a result, the penetration of DG in the electricity network will increase and may affect the system. In light of this, various forms of Distributed Generation (DG) technologies have been connected to the system, either to the transmission or distribution system. The installation of DG requires optimisation process to identify the correct location and sizing. Improper sizing and location of DG installation may result to overcompensation or under compensation. Most optimisation techniques are found to face inaccurate and stucked at local minimum phenomena with computationally burdensome. Thus, a reliable optimisation technique is crucial to address this issue. This thesis presents a novel Embedded Meta Evolutionary–Firefly Algorithm-Artificial Neural Network for Multi-DG planning in distribution system. In this study, Meta Evolutionary–Firefly Algorithm (EMEFA) was initially developed to expedite the computational time in multi-DG installation with improved accuracy. Optimal location and sizing are determined using the proposed EMEFA technique. Consequently, a new clustering technique was developed to categorise the DG placement in accordance with different DG types and DG models. Load in the distribution system is divided into three categories i.e. residential, commercial and industrial. These three load types are voltage dependent, and active and reactive power components respond differently to variations in voltage. The voltage dependent load has a main impact on distribution system planning studies. In achieving optimal allocation of DG, two techniques were proposed to study the DG planning which is the ranking identification for DG installation and the integrated clustering development and pre-developed EMEFA was employed.
format Thesis
author Abdul Rahim, Siti Rafidah
author_facet Abdul Rahim, Siti Rafidah
author_sort Abdul Rahim, Siti Rafidah
title Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
title_short Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
title_full Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
title_fullStr Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
title_full_unstemmed Embedded Meta evolutionary-firefly algorithm-ANN for multi dg planning in distribution system / Siti Rafidah Abdul Rahim
title_sort embedded meta evolutionary-firefly algorithm-ann for multi dg planning in distribution system / siti rafidah abdul rahim
publishDate 2019
url https://ir.uitm.edu.my/id/eprint/82243/1/82243.pdf
https://ir.uitm.edu.my/id/eprint/82243/
_version_ 1789944543810945024