Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images
Steatosis or fatty liver disease (FLD) is characterized by the abnormal retention of large vacuoles of neutral fat in the liver cells, either due to alcoholism or metabolic syndrome. Succession of FLD can lead to severe liver diseases such as hepatocellular carcinoma, cirrhosis and hepatic inflammat...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2016
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/18047/ http://dx.doi.org/10.1016/j.inffus.2015.09.006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.18047 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.180472017-10-23T03:19:15Z http://eprints.um.edu.my/18047/ Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images Acharya, U.R. Fujita, H. Bhat, S. Raghavendra, U. Gudigar, A. Molinari, F. Vijayananthan, A. Ng, K.H. R Medicine TA Engineering (General). Civil engineering (General) Steatosis or fatty liver disease (FLD) is characterized by the abnormal retention of large vacuoles of neutral fat in the liver cells, either due to alcoholism or metabolic syndrome. Succession of FLD can lead to severe liver diseases such as hepatocellular carcinoma, cirrhosis and hepatic inflammation but it is a reversible disease if diagnosed early. Thus, computer-aided diagnostic tools play a very important role in the automated diagnosis of FLD. This paper focuses on the detection of steatosis and classification of steatotic livers from the normal using ultrasound images. The significant information from the image is extracted using GIST descriptor models. Marginal Fisher Analysis (MFA) integrated with Wilcoxon signed-rank test helps to eliminate the trivial features and provides the distinctive features for qualitative classification. Finally the clinically significant features are fused using classifiers such as decision tree (DT), support vector machine (SVM), adaBoost, k-nearest neighbor (kNN), probabilistic neural network (PNN), naïve Bayes (NB), fuzzy Sugeno (FS), linear and quadratic discriminant analysis classification of normal and abnormal liver images. Results portray that PNN classifier can diagnose FLD with an average classification accuracy of 98%, 96% sensitivity, 100% specificity and Area Under Curve (AUC) of 0.9674 correctly. Elsevier 2016 Article PeerReviewed Acharya, U.R. and Fujita, H. and Bhat, S. and Raghavendra, U. and Gudigar, A. and Molinari, F. and Vijayananthan, A. and Ng, K.H. (2016) Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Information Fusion, 29. pp. 32-39. ISSN 1566-2535 http://dx.doi.org/10.1016/j.inffus.2015.09.006 doi:10.1016/j.inffus.2015.09.006 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
R Medicine TA Engineering (General). Civil engineering (General) |
spellingShingle |
R Medicine TA Engineering (General). Civil engineering (General) Acharya, U.R. Fujita, H. Bhat, S. Raghavendra, U. Gudigar, A. Molinari, F. Vijayananthan, A. Ng, K.H. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
description |
Steatosis or fatty liver disease (FLD) is characterized by the abnormal retention of large vacuoles of neutral fat in the liver cells, either due to alcoholism or metabolic syndrome. Succession of FLD can lead to severe liver diseases such as hepatocellular carcinoma, cirrhosis and hepatic inflammation but it is a reversible disease if diagnosed early. Thus, computer-aided diagnostic tools play a very important role in the automated diagnosis of FLD. This paper focuses on the detection of steatosis and classification of steatotic livers from the normal using ultrasound images. The significant information from the image is extracted using GIST descriptor models. Marginal Fisher Analysis (MFA) integrated with Wilcoxon signed-rank test helps to eliminate the trivial features and provides the distinctive features for qualitative classification. Finally the clinically significant features are fused using classifiers such as decision tree (DT), support vector machine (SVM), adaBoost, k-nearest neighbor (kNN), probabilistic neural network (PNN), naïve Bayes (NB), fuzzy Sugeno (FS), linear and quadratic discriminant analysis classification of normal and abnormal liver images. Results portray that PNN classifier can diagnose FLD with an average classification accuracy of 98%, 96% sensitivity, 100% specificity and Area Under Curve (AUC) of 0.9674 correctly. |
format |
Article |
author |
Acharya, U.R. Fujita, H. Bhat, S. Raghavendra, U. Gudigar, A. Molinari, F. Vijayananthan, A. Ng, K.H. |
author_facet |
Acharya, U.R. Fujita, H. Bhat, S. Raghavendra, U. Gudigar, A. Molinari, F. Vijayananthan, A. Ng, K.H. |
author_sort |
Acharya, U.R. |
title |
Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
title_short |
Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
title_full |
Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
title_fullStr |
Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
title_full_unstemmed |
Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images |
title_sort |
decision support system for fatty liver disease using gist descriptors extracted from ultrasound images |
publisher |
Elsevier |
publishDate |
2016 |
url |
http://eprints.um.edu.my/18047/ http://dx.doi.org/10.1016/j.inffus.2015.09.006 |
_version_ |
1643690594766159872 |