Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of tem...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong, Chiew Yen, Teoh, Ming Li, Phang, Siew Moi, Lim, Phaik Eem, Beardall, John
Format: Article
Published: Public Library of Science 2015
Subjects:
Online Access:http://eprints.um.edu.my/19455/
http://dx.doi.org/10.1371/journal.pone.0139469
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.19455
record_format eprints
spelling my.um.eprints.194552019-12-03T11:30:14Z http://eprints.um.edu.my/19455/ Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair Wong, Chiew Yen Teoh, Ming Li Phang, Siew Moi Lim, Phaik Eem Beardall, John Q Science (General) QH Natural history Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20C. The temperate Chlorella was exposed to 11, 18 and 25C while the tropical Chlorella was exposed to 24, 28 and 30C. A pulse-Amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency () were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in PSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming. Public Library of Science 2015 Article PeerReviewed Wong, Chiew Yen and Teoh, Ming Li and Phang, Siew Moi and Lim, Phaik Eem and Beardall, John (2015) Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair. PLoS ONE, 10 (10). e0139469. ISSN 1932-6203 http://dx.doi.org/10.1371/journal.pone.0139469 doi:10.1371/journal.pone.0139469
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
QH Natural history
spellingShingle Q Science (General)
QH Natural history
Wong, Chiew Yen
Teoh, Ming Li
Phang, Siew Moi
Lim, Phaik Eem
Beardall, John
Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
description Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20C. The temperate Chlorella was exposed to 11, 18 and 25C while the tropical Chlorella was exposed to 24, 28 and 30C. A pulse-Amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency () were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in PSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.
format Article
author Wong, Chiew Yen
Teoh, Ming Li
Phang, Siew Moi
Lim, Phaik Eem
Beardall, John
author_facet Wong, Chiew Yen
Teoh, Ming Li
Phang, Siew Moi
Lim, Phaik Eem
Beardall, John
author_sort Wong, Chiew Yen
title Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
title_short Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
title_full Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
title_fullStr Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
title_full_unstemmed Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair
title_sort interactive effects of temperature and uv radiation on photosynthesis of chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair
publisher Public Library of Science
publishDate 2015
url http://eprints.um.edu.my/19455/
http://dx.doi.org/10.1371/journal.pone.0139469
_version_ 1654960691746963456