Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide
Mixed metal oxides (MMO) with a homogenously distributed ZnAl 2 O 4 in ZnO network were prepared through a novel combination of co-precipitation and thermal treatment approaches using Zn/Al-layered double hydroxide (LDH) as precursor. The effect of thermal treatment temperature of Zn/Al-LDH for the...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
IOP Publishing
2018
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/20803/ https://doi.org/10.1088/2053-1591/aadbca |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.20803 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.208032019-04-03T08:54:56Z http://eprints.um.edu.my/20803/ Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide Salih, Ethar Yahya Sabri, Mohd Faizul Mohd Sulaiman, Khaulah Hussein, Mohd Zobir Said, Suhana Mohd Usop, Rohida Salleh, Faiz Ali Bashir, Mohamed Bashir Q Science (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering Mixed metal oxides (MMO) with a homogenously distributed ZnAl 2 O 4 in ZnO network were prepared through a novel combination of co-precipitation and thermal treatment approaches using Zn/Al-layered double hydroxide (LDH) as precursor. The effect of thermal treatment temperature of Zn/Al-LDH for the formation of ZnO/ZnAl 2 O 4 -MMO was studied via their thermal, structural, textural and optical properties. The results reveal that the synthesized Zn/Al-LDH was advanced to ZnO/ZnAl 2 O 4 -MMO starting at 200 °C, while heat treatment at 400 °C resulted in the optimum BET surface area of 53 m 2 g -1 with formation of mesoporous structure. Furthermore, diffuse reflectance microscopy showed that there is more than one energy band gap of pristine Zn/Al-LDH, while samples treated at 200 °C and above demonstrated a single energy band gap with redshift from 3.3 to 3.21 eV. Photoluminescence (PL) analysis showed a quench in the PL spectra as the temperature increased to 400 °C, where the sample with the optimum surface area presents the highest I NBE /I DLE ratio of 0.78. A precise control of the thermal treatment temperature provides short pathways for preparing high BET surface area MMO-based materials. IOP Publishing 2018 Article PeerReviewed Salih, Ethar Yahya and Sabri, Mohd Faizul Mohd and Sulaiman, Khaulah and Hussein, Mohd Zobir and Said, Suhana Mohd and Usop, Rohida and Salleh, Faiz and Ali Bashir, Mohamed Bashir (2018) Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide. Materials Research Express, 5 (11). p. 116202. ISSN 2053-1591 https://doi.org/10.1088/2053-1591/aadbca doi:10.1088/2053-1591/aadbca |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
Q Science (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
Q Science (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering Salih, Ethar Yahya Sabri, Mohd Faizul Mohd Sulaiman, Khaulah Hussein, Mohd Zobir Said, Suhana Mohd Usop, Rohida Salleh, Faiz Ali Bashir, Mohamed Bashir Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
description |
Mixed metal oxides (MMO) with a homogenously distributed ZnAl 2 O 4 in ZnO network were prepared through a novel combination of co-precipitation and thermal treatment approaches using Zn/Al-layered double hydroxide (LDH) as precursor. The effect of thermal treatment temperature of Zn/Al-LDH for the formation of ZnO/ZnAl 2 O 4 -MMO was studied via their thermal, structural, textural and optical properties. The results reveal that the synthesized Zn/Al-LDH was advanced to ZnO/ZnAl 2 O 4 -MMO starting at 200 °C, while heat treatment at 400 °C resulted in the optimum BET surface area of 53 m 2 g -1 with formation of mesoporous structure. Furthermore, diffuse reflectance microscopy showed that there is more than one energy band gap of pristine Zn/Al-LDH, while samples treated at 200 °C and above demonstrated a single energy band gap with redshift from 3.3 to 3.21 eV. Photoluminescence (PL) analysis showed a quench in the PL spectra as the temperature increased to 400 °C, where the sample with the optimum surface area presents the highest I NBE /I DLE ratio of 0.78. A precise control of the thermal treatment temperature provides short pathways for preparing high BET surface area MMO-based materials. |
format |
Article |
author |
Salih, Ethar Yahya Sabri, Mohd Faizul Mohd Sulaiman, Khaulah Hussein, Mohd Zobir Said, Suhana Mohd Usop, Rohida Salleh, Faiz Ali Bashir, Mohamed Bashir |
author_facet |
Salih, Ethar Yahya Sabri, Mohd Faizul Mohd Sulaiman, Khaulah Hussein, Mohd Zobir Said, Suhana Mohd Usop, Rohida Salleh, Faiz Ali Bashir, Mohamed Bashir |
author_sort |
Salih, Ethar Yahya |
title |
Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
title_short |
Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
title_full |
Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
title_fullStr |
Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
title_full_unstemmed |
Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide |
title_sort |
thermal, structural, textural and optical properties of zno/znal2o4 mixed metal oxide-based zn/al layered double hydroxide |
publisher |
IOP Publishing |
publishDate |
2018 |
url |
http://eprints.um.edu.my/20803/ https://doi.org/10.1088/2053-1591/aadbca |
_version_ |
1643691384310333440 |