Decomposing the complete r -graph
Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptoti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Elsevier
2018
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/21539/ https://doi.org/10.1016/j.jcta.2017.08.008 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.21539 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.215392019-06-26T03:22:22Z http://eprints.um.edu.my/21539/ Decomposing the complete r -graph Leader, Imre Milicevic, Luka Tan, Ta Sheng Q Science (General) QA Mathematics Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that fr(n)≤([formula presented]+o(1))(nr/2) for each even r≥4. Elsevier 2018 Article PeerReviewed Leader, Imre and Milicevic, Luka and Tan, Ta Sheng (2018) Decomposing the complete r -graph. Journal of Combinatorial Theory, Series A, 154. pp. 21-31. ISSN 0097-3165 https://doi.org/10.1016/j.jcta.2017.08.008 doi:10.1016/j.jcta.2017.08.008 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
Q Science (General) QA Mathematics |
spellingShingle |
Q Science (General) QA Mathematics Leader, Imre Milicevic, Luka Tan, Ta Sheng Decomposing the complete r -graph |
description |
Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that fr(n)≤([formula presented]+o(1))(nr/2) for each even r≥4. |
format |
Article |
author |
Leader, Imre Milicevic, Luka Tan, Ta Sheng |
author_facet |
Leader, Imre Milicevic, Luka Tan, Ta Sheng |
author_sort |
Leader, Imre |
title |
Decomposing the complete r -graph |
title_short |
Decomposing the complete r -graph |
title_full |
Decomposing the complete r -graph |
title_fullStr |
Decomposing the complete r -graph |
title_full_unstemmed |
Decomposing the complete r -graph |
title_sort |
decomposing the complete r -graph |
publisher |
Elsevier |
publishDate |
2018 |
url |
http://eprints.um.edu.my/21539/ https://doi.org/10.1016/j.jcta.2017.08.008 |
_version_ |
1643691588014047232 |