Decomposing the complete r -graph

Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptoti...

Full description

Saved in:
Bibliographic Details
Main Authors: Leader, Imre, Milicevic, Luka, Tan, Ta Sheng
Format: Article
Published: Elsevier 2018
Subjects:
Online Access:http://eprints.um.edu.my/21539/
https://doi.org/10.1016/j.jcta.2017.08.008
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.21539
record_format eprints
spelling my.um.eprints.215392019-06-26T03:22:22Z http://eprints.um.edu.my/21539/ Decomposing the complete r -graph Leader, Imre Milicevic, Luka Tan, Ta Sheng Q Science (General) QA Mathematics Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that fr(n)≤([formula presented]+o(1))(nr/2) for each even r≥4. Elsevier 2018 Article PeerReviewed Leader, Imre and Milicevic, Luka and Tan, Ta Sheng (2018) Decomposing the complete r -graph. Journal of Combinatorial Theory, Series A, 154. pp. 21-31. ISSN 0097-3165 https://doi.org/10.1016/j.jcta.2017.08.008 doi:10.1016/j.jcta.2017.08.008
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
QA Mathematics
spellingShingle Q Science (General)
QA Mathematics
Leader, Imre
Milicevic, Luka
Tan, Ta Sheng
Decomposing the complete r -graph
description Let fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that fr(n)≤([formula presented]+o(1))(nr/2) for each even r≥4.
format Article
author Leader, Imre
Milicevic, Luka
Tan, Ta Sheng
author_facet Leader, Imre
Milicevic, Luka
Tan, Ta Sheng
author_sort Leader, Imre
title Decomposing the complete r -graph
title_short Decomposing the complete r -graph
title_full Decomposing the complete r -graph
title_fullStr Decomposing the complete r -graph
title_full_unstemmed Decomposing the complete r -graph
title_sort decomposing the complete r -graph
publisher Elsevier
publishDate 2018
url http://eprints.um.edu.my/21539/
https://doi.org/10.1016/j.jcta.2017.08.008
_version_ 1643691588014047232