Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration
A series of novel bimetallic copper/zirconia carbon nanofibers supported catalysts with different Cu contents (5–25 wt%) were synthesized via deposition precipitation method. The physicochemical characterization of the calcined catalysts was carried out by X-ray diffraction, inductively coupled plas...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2018
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/22140/ https://doi.org/10.1016/j.cej.2017.10.087 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
Summary: | A series of novel bimetallic copper/zirconia carbon nanofibers supported catalysts with different Cu contents (5–25 wt%) were synthesized via deposition precipitation method. The physicochemical characterization of the calcined catalysts was carried out by X-ray diffraction, inductively coupled plasma optical emission spectroscopy, N2 adsorption–desorption, N2O chemisorption, temperature programmed reduction, X-ray photoelectron spectroscopy, high resolution transmission electron microscopy and temperature programmed CO2 desorption. Structure-reactivity correlation for catalytic hydrogenation of CO2 to methanol was discussed in details. Reaction studies revealed 15 wt% as optimum Cu concentration for CO2 conversion to methanol with CO2/H2 feed volume ratio of 1:3. Cu surface area was found to play a vital role in methanol synthesis rate. CO2 conversion was observed to be directly proportional to the number of total basic sites. A comparative study of this novel catalyst with the recently reported data revealed the better CO2 conversion at relatively low reaction temperature. |
---|