PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been used to solve a variety of complex optimization problems. In spite of the acceptance of the algorithm in various fields, PSO still suffers from common issues such as premature convergence and local minima. This provides a...

Full description

Saved in:
Bibliographic Details
Main Authors: Dada, Emmanuel Gbenga, Ramlan, Effirul Ikhwan
Format: Article
Published: Faculty of Computer Science and Information Technology, University of Malaya 2018
Subjects:
Online Access:http://eprints.um.edu.my/22178/
https://doi.org/10.22452/mjcs.vol31no1.2
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.22178
record_format eprints
spelling my.um.eprints.221782019-09-03T05:29:41Z http://eprints.um.edu.my/22178/ PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm Dada, Emmanuel Gbenga Ramlan, Effirul Ikhwan QA75 Electronic computers. Computer science Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been used to solve a variety of complex optimization problems. In spite of the acceptance of the algorithm in various fields, PSO still suffers from common issues such as premature convergence and local minima. This provides a platform for generating a variety of PSO variants. Although these variants are successful in addressing issues specific to a directed domain, they are still unable to resolve the issues effectively. The Interior-Point Methods (IPMs) are efficient tools for solving nonlinear optimization problems. On the one hand, the method is depicted as the most robust algorithm for solving large scale nonlinear optimization problems. On the other, similar to PSO, the methods are still plagued with several issues. We propose Primal-Dual Interior Point Particle Swarm Optimization (pdPSO) to resolve the shortcomings of a standard PSO without the limitations of the IPM methods. We applied the Primal Dual procedure to each particle in a finite number of iterations, and fed the PSO with the its output. We compared the performance of our new algorithm (pdPSO) with IPM and PSO using nine different dynamic benchmark functions. Our results revealed that pdPSO performed better than both the independent PSO algorithm and the IPM method. The proposed algorithm is not susceptible to premature convergence, and can better avoid local minima than conventional PSO, hence hypothetically it has the potential to perform better than many variants of PSO. Faculty of Computer Science and Information Technology, University of Malaya 2018 Article PeerReviewed Dada, Emmanuel Gbenga and Ramlan, Effirul Ikhwan (2018) PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm. Malaysian Journal of Computer Science, 31 (1). pp. 17-34. ISSN 0127-9084 https://doi.org/10.22452/mjcs.vol31no1.2 doi:10.22452/mjcs.vol31no1.2
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Dada, Emmanuel Gbenga
Ramlan, Effirul Ikhwan
PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
description Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been used to solve a variety of complex optimization problems. In spite of the acceptance of the algorithm in various fields, PSO still suffers from common issues such as premature convergence and local minima. This provides a platform for generating a variety of PSO variants. Although these variants are successful in addressing issues specific to a directed domain, they are still unable to resolve the issues effectively. The Interior-Point Methods (IPMs) are efficient tools for solving nonlinear optimization problems. On the one hand, the method is depicted as the most robust algorithm for solving large scale nonlinear optimization problems. On the other, similar to PSO, the methods are still plagued with several issues. We propose Primal-Dual Interior Point Particle Swarm Optimization (pdPSO) to resolve the shortcomings of a standard PSO without the limitations of the IPM methods. We applied the Primal Dual procedure to each particle in a finite number of iterations, and fed the PSO with the its output. We compared the performance of our new algorithm (pdPSO) with IPM and PSO using nine different dynamic benchmark functions. Our results revealed that pdPSO performed better than both the independent PSO algorithm and the IPM method. The proposed algorithm is not susceptible to premature convergence, and can better avoid local minima than conventional PSO, hence hypothetically it has the potential to perform better than many variants of PSO.
format Article
author Dada, Emmanuel Gbenga
Ramlan, Effirul Ikhwan
author_facet Dada, Emmanuel Gbenga
Ramlan, Effirul Ikhwan
author_sort Dada, Emmanuel Gbenga
title PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
title_short PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
title_full PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
title_fullStr PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
title_full_unstemmed PdPSO: The fusion of primal-dual interior point method and Particle Swarm Optimization algorithm
title_sort pdpso: the fusion of primal-dual interior point method and particle swarm optimization algorithm
publisher Faculty of Computer Science and Information Technology, University of Malaya
publishDate 2018
url http://eprints.um.edu.my/22178/
https://doi.org/10.22452/mjcs.vol31no1.2
_version_ 1646210166341763072