Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market
Smart grid has evolved into a viable platform for participants of electricity market to effectively regulate their bidding strategies based on demand-side management (DSM) models ascribed to its immense technological advancements in recent years. Reliability of system operation as well as capital co...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers
2019
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/23743/ https://doi.org/10.1109/ACCESS.2019.2938842 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.23743 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.237432020-02-11T04:15:15Z http://eprints.um.edu.my/23743/ Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market Pourdaryaei, Alireza Mokhlis, Hazlie Illias, Hazlee Azil Kaboli, S. Hr. Aghay Ahmad, Shameem Ang, Swee Peng TK Electrical engineering. Electronics Nuclear engineering Smart grid has evolved into a viable platform for participants of electricity market to effectively regulate their bidding strategies based on demand-side management (DSM) models ascribed to its immense technological advancements in recent years. Reliability of system operation as well as capital cost investments can improve greatly with responsiveness of market participants. In this regard, efficient design, implementation, evaluation of numerous demand response measures and development of robust short-term price forecasting in the day-ahead transactions are of the utmost importance. Accuracy and efficiency of the day-ahead price forecasting process are complex challenges in deregulated electricity market. The unstable nature of electricity price compared to load series causes lower accuracy. Therefore, this research proposes a hybrid method for electricity price forecasting via artificial neural network (ANN) and artificial cooperative search algorithm (ACS). In parallel, a feature selection technique based on the combination of mutual information (MI) and neural network (NN) is developed in this study to select the input variables subsets, which have substantial impact on forecasting of electricity price. Actual data sets are collected from Ontario electricity market of the year 2017 for the verification of simulation results. Finally, the simulation results validated the premise of the proposed hybrid method through enhanced accuracy compared to the results acquired by implementing hybrid support vector machine (SVM) and hybrid ANN optimization methods. © 2013 IEEE. Institute of Electrical and Electronics Engineers 2019 Article PeerReviewed Pourdaryaei, Alireza and Mokhlis, Hazlie and Illias, Hazlee Azil and Kaboli, S. Hr. Aghay and Ahmad, Shameem and Ang, Swee Peng (2019) Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market. IEEE Access, 7. pp. 125369-125386. ISSN 2169-3536 https://doi.org/10.1109/ACCESS.2019.2938842 doi:10.1109/ACCESS.2019.2938842 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Pourdaryaei, Alireza Mokhlis, Hazlie Illias, Hazlee Azil Kaboli, S. Hr. Aghay Ahmad, Shameem Ang, Swee Peng Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
description |
Smart grid has evolved into a viable platform for participants of electricity market to effectively regulate their bidding strategies based on demand-side management (DSM) models ascribed to its immense technological advancements in recent years. Reliability of system operation as well as capital cost investments can improve greatly with responsiveness of market participants. In this regard, efficient design, implementation, evaluation of numerous demand response measures and development of robust short-term price forecasting in the day-ahead transactions are of the utmost importance. Accuracy and efficiency of the day-ahead price forecasting process are complex challenges in deregulated electricity market. The unstable nature of electricity price compared to load series causes lower accuracy. Therefore, this research proposes a hybrid method for electricity price forecasting via artificial neural network (ANN) and artificial cooperative search algorithm (ACS). In parallel, a feature selection technique based on the combination of mutual information (MI) and neural network (NN) is developed in this study to select the input variables subsets, which have substantial impact on forecasting of electricity price. Actual data sets are collected from Ontario electricity market of the year 2017 for the verification of simulation results. Finally, the simulation results validated the premise of the proposed hybrid method through enhanced accuracy compared to the results acquired by implementing hybrid support vector machine (SVM) and hybrid ANN optimization methods. © 2013 IEEE. |
format |
Article |
author |
Pourdaryaei, Alireza Mokhlis, Hazlie Illias, Hazlee Azil Kaboli, S. Hr. Aghay Ahmad, Shameem Ang, Swee Peng |
author_facet |
Pourdaryaei, Alireza Mokhlis, Hazlie Illias, Hazlee Azil Kaboli, S. Hr. Aghay Ahmad, Shameem Ang, Swee Peng |
author_sort |
Pourdaryaei, Alireza |
title |
Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
title_short |
Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
title_full |
Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
title_fullStr |
Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
title_full_unstemmed |
Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market |
title_sort |
hybrid ann and artificial cooperative search algorithm to forecast short-term electricity price in de-regulated electricity market |
publisher |
Institute of Electrical and Electronics Engineers |
publishDate |
2019 |
url |
http://eprints.um.edu.my/23743/ https://doi.org/10.1109/ACCESS.2019.2938842 |
_version_ |
1662755173642010624 |