Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction
In spite of advantages of direct methanol fuel cells, low methanol oxidation reaction and fuel crossover from anode to cathode, there remains a challenge that inhibits it from being commercialized. Active electrocatalysts are in high demand to promote the methanol oxidation reaction. The methanol re...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
SAGE Publications
2019
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/23848/ https://doi.org/10.1177/1847980419827171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.23848 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.238482020-02-19T02:45:58Z http://eprints.um.edu.my/23848/ Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction Ng, Jen Chao Tan, Chou Yong Ong, Boon Hoong Matsuda, Atsunori Basirun, Wan Jefrey Tan, Wai Kian Ramesh, Singh Yap, Boon Kar QD Chemistry TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering In spite of advantages of direct methanol fuel cells, low methanol oxidation reaction and fuel crossover from anode to cathode, there remains a challenge that inhibits it from being commercialized. Active electrocatalysts are in high demand to promote the methanol oxidation reaction. The methanol reached at the anode can be immediately reacted, and thus, less methanol to cross to the cathode. The performance of electrocatalysts can be significantly influenced by varying the concentration of precursor solution. Theoretically, concentrated precursor solution facilitates rapid nucleation and growth; diluted precursor solution causes slow nucleation and growth. Rapid nucleation and slow growth have positive effect on the size of electrocatalysts which plays a significant role in the catalytic performance. Upon the addition of appropriate concentration of graphene oxide, the graphene oxide was reported to have stabilizing effect towards the catalyst nanoparticles. This work synthesized reduced graphene oxide–supported palladium electrocatalysts at different concentrations (0.5, 1.0, 2.0, 3.0 and 4.0 mg mL −1 ) with fixed volume and mass ratio of reduced graphene oxide to palladium by microwave-assisted reduction method. Results showed that reduced graphene oxide–supported palladium synthesized at a concentration of 1.0 mg mL −1 gave the best methanol oxidation reactivity (405.37 mA mg −1 ) and largest electrochemical active surface area (83.57 m 2 g −1 ). © The Author(s) 2019. SAGE Publications 2019 Article PeerReviewed Ng, Jen Chao and Tan, Chou Yong and Ong, Boon Hoong and Matsuda, Atsunori and Basirun, Wan Jefrey and Tan, Wai Kian and Ramesh, Singh and Yap, Boon Kar (2019) Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction. Nanomaterials and Nanotechnology, 9. p. 184798041982717. ISSN 1847-9804 https://doi.org/10.1177/1847980419827171 doi:10.1177/1847980419827171 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QD Chemistry TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
QD Chemistry TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery TK Electrical engineering. Electronics Nuclear engineering Ng, Jen Chao Tan, Chou Yong Ong, Boon Hoong Matsuda, Atsunori Basirun, Wan Jefrey Tan, Wai Kian Ramesh, Singh Yap, Boon Kar Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
description |
In spite of advantages of direct methanol fuel cells, low methanol oxidation reaction and fuel crossover from anode to cathode, there remains a challenge that inhibits it from being commercialized. Active electrocatalysts are in high demand to promote the methanol oxidation reaction. The methanol reached at the anode can be immediately reacted, and thus, less methanol to cross to the cathode. The performance of electrocatalysts can be significantly influenced by varying the concentration of precursor solution. Theoretically, concentrated precursor solution facilitates rapid nucleation and growth; diluted precursor solution causes slow nucleation and growth. Rapid nucleation and slow growth have positive effect on the size of electrocatalysts which plays a significant role in the catalytic performance. Upon the addition of appropriate concentration of graphene oxide, the graphene oxide was reported to have stabilizing effect towards the catalyst nanoparticles. This work synthesized reduced graphene oxide–supported palladium electrocatalysts at different concentrations (0.5, 1.0, 2.0, 3.0 and 4.0 mg mL −1 ) with fixed volume and mass ratio of reduced graphene oxide to palladium by microwave-assisted reduction method. Results showed that reduced graphene oxide–supported palladium synthesized at a concentration of 1.0 mg mL −1 gave the best methanol oxidation reactivity (405.37 mA mg −1 ) and largest electrochemical active surface area (83.57 m 2 g −1 ). © The Author(s) 2019. |
format |
Article |
author |
Ng, Jen Chao Tan, Chou Yong Ong, Boon Hoong Matsuda, Atsunori Basirun, Wan Jefrey Tan, Wai Kian Ramesh, Singh Yap, Boon Kar |
author_facet |
Ng, Jen Chao Tan, Chou Yong Ong, Boon Hoong Matsuda, Atsunori Basirun, Wan Jefrey Tan, Wai Kian Ramesh, Singh Yap, Boon Kar |
author_sort |
Ng, Jen Chao |
title |
Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
title_short |
Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
title_full |
Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
title_fullStr |
Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
title_full_unstemmed |
Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
title_sort |
nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction |
publisher |
SAGE Publications |
publishDate |
2019 |
url |
http://eprints.um.edu.my/23848/ https://doi.org/10.1177/1847980419827171 |
_version_ |
1662755188729970688 |