Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes

A series of Schiff base metal complexes with the formulations [Ni(L1)2] (4), [Ni(L2)2] (5) and [Ni(L3)2] (6), (where 1 or L1 = fluorene-2-carboxaldehyde thiosemicarbazone, 2 or L2 = fluorene-2-carboxaldehyde-4-methyl-thiosemicarbazone and 3 or L3 = fluorene-2-carboxaldehyde-4-ethyl-thiosemicarbazone...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Savir, Savina, Wei, Zi Jun, Liew, Jonathan Wee Kent, Vythilingam, Indra, Lim, Yvonne Ai Lian, Saad, Hazwani Mat, Sim, Kae Shin, Tan, Kong Wai
التنسيق: مقال
منشور في: Elsevier 2020
الموضوعات:
الوصول للمادة أونلاين:http://eprints.um.edu.my/25119/
https://doi.org/10.1016/j.molstruc.2020.128090
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Malaya
الوصف
الملخص:A series of Schiff base metal complexes with the formulations [Ni(L1)2] (4), [Ni(L2)2] (5) and [Ni(L3)2] (6), (where 1 or L1 = fluorene-2-carboxaldehyde thiosemicarbazone, 2 or L2 = fluorene-2-carboxaldehyde-4-methyl-thiosemicarbazone and 3 or L3 = fluorene-2-carboxaldehyde-4-ethyl-thiosemicarbazone) have been synthesised. The compounds were characterised by FT-IR, 1H NMR, 13C NMR, and single crystal X-Ray diffraction. The results suggested that the thiosemicarbazone ligands behaved as bidentate ligands which were coordinated to the Ni(II) ion via their N,S atoms. Among the six compounds tested, two of the nickel complexes which are complexes 5 and 6 exhibited moderate in vitro antimalarial activity with IC50 of 23.79 and 2.29 μM, respectively. It is noteworthy that as the size of the substituent group increases, the antimalarial activity of the compound increases. Complex 6 exhibited the highest antimalarial activity. In addition, ligand 3 and complex 4 showed higher cytotoxic activity against HCT 116 human colorectal carcinoma cell line than cisplatin with IC50 of 0.69 and 3.36 μM, respectively. © 2020 Elsevier B.V.