A mathematical model of the tuberculosis epidemic

Tuberculosis has continued to retain its title as ``the captain among these men of death''. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goa...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayinla, Ally Yeketi, Othman, Wan Ainun Mior, Rabiu, Musa
Format: Article
Published: Springer 2021
Subjects:
Online Access:http://eprints.um.edu.my/27147/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.27147
record_format eprints
spelling my.um.eprints.271472022-05-25T04:21:30Z http://eprints.um.edu.my/27147/ A mathematical model of the tuberculosis epidemic Ayinla, Ally Yeketi Othman, Wan Ainun Mior Rabiu, Musa QA Mathematics Tuberculosis has continued to retain its title as ``the captain among these men of death''. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious I-1, diagnosed infectious I-2, treated T and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity (R0<1) is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0-20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community. Springer 2021-09 Article PeerReviewed Ayinla, Ally Yeketi and Othman, Wan Ainun Mior and Rabiu, Musa (2021) A mathematical model of the tuberculosis epidemic. Acta Biotheoretica, 69 (3). pp. 225-255. ISSN 0001-5342, DOI https://doi.org/10.1007/s10441-020-09406-8 <https://doi.org/10.1007/s10441-020-09406-8>. 10.1007/s10441-020-09406-8
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QA Mathematics
spellingShingle QA Mathematics
Ayinla, Ally Yeketi
Othman, Wan Ainun Mior
Rabiu, Musa
A mathematical model of the tuberculosis epidemic
description Tuberculosis has continued to retain its title as ``the captain among these men of death''. This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious I-1, diagnosed infectious I-2, treated T and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity (R0<1) is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0-20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.
format Article
author Ayinla, Ally Yeketi
Othman, Wan Ainun Mior
Rabiu, Musa
author_facet Ayinla, Ally Yeketi
Othman, Wan Ainun Mior
Rabiu, Musa
author_sort Ayinla, Ally Yeketi
title A mathematical model of the tuberculosis epidemic
title_short A mathematical model of the tuberculosis epidemic
title_full A mathematical model of the tuberculosis epidemic
title_fullStr A mathematical model of the tuberculosis epidemic
title_full_unstemmed A mathematical model of the tuberculosis epidemic
title_sort mathematical model of the tuberculosis epidemic
publisher Springer
publishDate 2021
url http://eprints.um.edu.my/27147/
_version_ 1735409505447968768