A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2)
The oxidation of sulfur dioxide and carbon monoxide on the surface of metal-doped nanotube catalysts is investigated, in particular on Cu-doped carbon nanotube (CNT), Cu-doped boron nitride nanotube (BNNT), Zn-doped CNT, and Zn-doped BNNT via the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Springer
2020
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/37235/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.37235 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.372352023-03-09T06:50:20Z http://eprints.um.edu.my/37235/ A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) Ashraf, Muhammad Agee Li, Cheng Zhang, Dangquan Najafi, Meysam QC Physics QE Geology The oxidation of sulfur dioxide and carbon monoxide on the surface of metal-doped nanotube catalysts is investigated, in particular on Cu-doped carbon nanotube (CNT), Cu-doped boron nitride nanotube (BNNT), Zn-doped CNT, and Zn-doped BNNT via the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The reaction energies and barrier energies for all the reaction steps involved in the oxidation of SO2 and carbon monoxide on the studied catalysts are calculated and compared. A suitable mechanism with lower barrier energies and higher reaction energies for the oxidation of sulfur dioxide and carbon monoxide is considered. The results show that the barrier energies for the reaction steps in the oxidation of sulfur dioxide and carbon monoxide molecules are lower on Cu-doped BNNT and Zn-doped BNNT compared with Cu-doped CNT and Zn-doped CNT, respectively. Finally, the Cu-doped CNT and Zn-doped CNT catalysts are proposed for the oxidation of sulfur dioxide and carbon monoxide molecules with suitable performance. Springer 2020-03 Article PeerReviewed Ashraf, Muhammad Agee and Li, Cheng and Zhang, Dangquan and Najafi, Meysam (2020) A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2). Journal of Computational Electronics, 19 (1). pp. 55-61. ISSN 1569-8025, DOI https://doi.org/10.1007/s10825-019-01418-z <https://doi.org/10.1007/s10825-019-01418-z>. 10.1007/s10825-019-01418-z |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QC Physics QE Geology |
spellingShingle |
QC Physics QE Geology Ashraf, Muhammad Agee Li, Cheng Zhang, Dangquan Najafi, Meysam A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
description |
The oxidation of sulfur dioxide and carbon monoxide on the surface of metal-doped nanotube catalysts is investigated, in particular on Cu-doped carbon nanotube (CNT), Cu-doped boron nitride nanotube (BNNT), Zn-doped CNT, and Zn-doped BNNT via the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The reaction energies and barrier energies for all the reaction steps involved in the oxidation of SO2 and carbon monoxide on the studied catalysts are calculated and compared. A suitable mechanism with lower barrier energies and higher reaction energies for the oxidation of sulfur dioxide and carbon monoxide is considered. The results show that the barrier energies for the reaction steps in the oxidation of sulfur dioxide and carbon monoxide molecules are lower on Cu-doped BNNT and Zn-doped BNNT compared with Cu-doped CNT and Zn-doped CNT, respectively. Finally, the Cu-doped CNT and Zn-doped CNT catalysts are proposed for the oxidation of sulfur dioxide and carbon monoxide molecules with suitable performance. |
format |
Article |
author |
Ashraf, Muhammad Agee Li, Cheng Zhang, Dangquan Najafi, Meysam |
author_facet |
Ashraf, Muhammad Agee Li, Cheng Zhang, Dangquan Najafi, Meysam |
author_sort |
Ashraf, Muhammad Agee |
title |
A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
title_short |
A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
title_full |
A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
title_fullStr |
A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
title_full_unstemmed |
A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2+1/2O(2) -> SO3) and CO (CO+1/2O(2) -> CO2) |
title_sort |
theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of so2 (so2+1/2o(2) -> so3) and co (co+1/2o(2) -> co2) |
publisher |
Springer |
publishDate |
2020 |
url |
http://eprints.um.edu.my/37235/ |
_version_ |
1761616813307723776 |