Estimation in regret-regression using quadratic inference functions with ridge estimator

In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularit...

全面介紹

Saved in:
書目詳細資料
Main Authors: Jalil, Nur Raihan Abdul, Mohamed, Nur Anisah, Yunus, Rossita Mohamad
格式: Article
出版: PUBLIC LIBRARY SCIENCE 2022
主題:
在線閱讀:http://eprints.um.edu.my/40436/
https://doi.org/10.1371/journal.pone.0271542
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Universiti Malaya
實物特徵
總結:In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularity issues may arise during computation when estimating the parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was introduced in rQIF-MRr to tackle the issues. A simulation study and an application to anticoagulation dataset were conducted to investigate the model's performance in parameter estimation. The results show that estimations using rQIF-MRr are more efficient than the QIF-MRr.