Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method
Liquid structures such as droplets and slugs exist inside gas channels of polymer electrolyte fuel cells in low-temperature applications. The efficiency of these electrochemical devices depends on the effective removal of the produced water. The gas channels' specifications like section geometr...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/41206/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.41206 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.412062023-09-13T07:08:22Z http://eprints.um.edu.my/41206/ Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method Cao, Yan El-Shorbagy, Mohamed A. Dahari, Mahidzal Cao, Dao Nam El Din, ElSayed M. Tag Huynh, Phat Huy Wae-hayee, Makatar TK Electrical engineering. Electronics Nuclear engineering Liquid structures such as droplets and slugs exist inside gas channels of polymer electrolyte fuel cells in low-temperature applications. The efficiency of these electrochemical devices depends on the effective removal of the produced water. The gas channels' specifications like section geometry, corner angles, and surface wettability properties substantially control the liquid removal process. Here, five channels with various section geometries are modeled and the liquid-slug discharge process is investigated using a transient volume of fluid method. The numerical model consists of a segment of the cathode-side gas channel with the working conditions of an operational fuel cell. The dynamic two-phase flow simulations show that channels with smaller width and height eventuate in proper flow distribution at the gas feed. A channel with the sectional dimensions of 0.5 mm x 0.5 mm results in. 35.18% faster GDL (Gas-Diffusion Layer) clearance, 29.32% faster liquid expulsion compared to other channels having 2-3 times higher dimensions. Therefore, this channel is recommended as the best design for improved fuel cell performance. (C) 2022 The Authors. Published by Elsevier Ltd. Elsevier 2022-11 Article PeerReviewed Cao, Yan and El-Shorbagy, Mohamed A. and Dahari, Mahidzal and Cao, Dao Nam and El Din, ElSayed M. Tag and Huynh, Phat Huy and Wae-hayee, Makatar (2022) Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method. Energy Reports, 8. pp. 9420-9430. ISSN 2352-4847, DOI https://doi.org/10.1016/j.egyr.2022.07.048 <https://doi.org/10.1016/j.egyr.2022.07.048>. 10.1016/j.egyr.2022.07.048 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Cao, Yan El-Shorbagy, Mohamed A. Dahari, Mahidzal Cao, Dao Nam El Din, ElSayed M. Tag Huynh, Phat Huy Wae-hayee, Makatar Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
description |
Liquid structures such as droplets and slugs exist inside gas channels of polymer electrolyte fuel cells in low-temperature applications. The efficiency of these electrochemical devices depends on the effective removal of the produced water. The gas channels' specifications like section geometry, corner angles, and surface wettability properties substantially control the liquid removal process. Here, five channels with various section geometries are modeled and the liquid-slug discharge process is investigated using a transient volume of fluid method. The numerical model consists of a segment of the cathode-side gas channel with the working conditions of an operational fuel cell. The dynamic two-phase flow simulations show that channels with smaller width and height eventuate in proper flow distribution at the gas feed. A channel with the sectional dimensions of 0.5 mm x 0.5 mm results in. 35.18% faster GDL (Gas-Diffusion Layer) clearance, 29.32% faster liquid expulsion compared to other channels having 2-3 times higher dimensions. Therefore, this channel is recommended as the best design for improved fuel cell performance. (C) 2022 The Authors. Published by Elsevier Ltd. |
format |
Article |
author |
Cao, Yan El-Shorbagy, Mohamed A. Dahari, Mahidzal Cao, Dao Nam El Din, ElSayed M. Tag Huynh, Phat Huy Wae-hayee, Makatar |
author_facet |
Cao, Yan El-Shorbagy, Mohamed A. Dahari, Mahidzal Cao, Dao Nam El Din, ElSayed M. Tag Huynh, Phat Huy Wae-hayee, Makatar |
author_sort |
Cao, Yan |
title |
Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
title_short |
Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
title_full |
Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
title_fullStr |
Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
title_full_unstemmed |
Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
title_sort |
examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method |
publisher |
Elsevier |
publishDate |
2022 |
url |
http://eprints.um.edu.my/41206/ |
_version_ |
1778161641249046528 |