Derivation of an anti-cancer drug nanocarrier using a malonic acid-based deep eutectic solvent as a functionalization agent

Deep eutectic solvents (DESs) are novel `green' solvents that have recently gained considerable interest from diverse sectors of the scientific community. They are considered biocompatible, chemically stable, biodegradable, low-volatility, and non-flammable. In addition, the physicochemical pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Zainal-Abidin, Mohamad Hamdi, Hayyan, Maan, Ngoh, Gek Cheng, Wong, Won Fen, Tok, Tugba Taskin
Format: Article
Published: Elsevier 2022
Subjects:
Online Access:http://eprints.um.edu.my/41344/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
Description
Summary:Deep eutectic solvents (DESs) are novel `green' solvents that have recently gained considerable interest from diverse sectors of the scientific community. They are considered biocompatible, chemically stable, biodegradable, low-volatility, and non-flammable. In addition, the physicochemical properties of DESs are highly tunable and can be customized to meet the needs of a particular mission, including for its novel application in drug delivery systems. Here, graphene functionalized with the DES choline chloride:malonic acid was investigated for anti-cancer activity after loading with the drug doxorubicin. The DES-functionalized graphene demonstrated high drug loading efficiency and exhibited destructive effects against cancerous cells. Real-time cell growth analysis confirmed its cytotoxicity against cancerous cells over time. All told, the combination of choline chloride and malonic acid shows great promise as a green functionalizing agent for a nano-drug carrier, owing to its lower cytotoxicity, higher doxorubicin loading capacity, and inhibition of cancer cell growth profile.