On the size of complete decompositions of finite cyclic groups
Let G be an abelian group and A(1), ..., A(k) (k >= 2) be nonempty subsets of G. The sets A(1), ..., A(k) are said to form a complete decomposition of G of order k if G = A(l) + ... + A(k) and A(1), ..., A(k) are pairwise disjoint. The size of a complete decomposition A(1), ..., A(k) of G is defi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Taylor & Francis Inc
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/42021/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.42021 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.420212023-10-18T04:43:29Z http://eprints.um.edu.my/42021/ On the size of complete decompositions of finite cyclic groups Chin, A. Y. M. Wang, K. L. Wong, Kok Bin QA Mathematics Let G be an abelian group and A(1), ..., A(k) (k >= 2) be nonempty subsets of G. The sets A(1), ..., A(k) are said to form a complete decomposition of G of order k if G = A(l) + ... + A(k) and A(1), ..., A(k) are pairwise disjoint. The size of a complete decomposition A(1), ..., A(k) of G is defined to be = vertical bar boolean OR(k)(i=1)A(i)vertical bar. = Sigma(k)(i=1) vertical bar A(i)vertical bar. In this paper, we determine the minimum and maximum size of a complete decomposition of a finite cyclic group. Taylor & Francis Inc 2022-10-03 Article PeerReviewed Chin, A. Y. M. and Wang, K. L. and Wong, Kok Bin (2022) On the size of complete decompositions of finite cyclic groups. Communications In Algebra, 50 (10). pp. 4145-4154. ISSN 0092-7872, DOI https://doi.org/10.1080/00927872.2022.2057520 <https://doi.org/10.1080/00927872.2022.2057520>. 10.1080/00927872.2022.2057520 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Chin, A. Y. M. Wang, K. L. Wong, Kok Bin On the size of complete decompositions of finite cyclic groups |
description |
Let G be an abelian group and A(1), ..., A(k) (k >= 2) be nonempty subsets of G. The sets A(1), ..., A(k) are said to form a complete decomposition of G of order k if G = A(l) + ... + A(k) and A(1), ..., A(k) are pairwise disjoint. The size of a complete decomposition A(1), ..., A(k) of G is defined to be = vertical bar boolean OR(k)(i=1)A(i)vertical bar. = Sigma(k)(i=1) vertical bar A(i)vertical bar. In this paper, we determine the minimum and maximum size of a complete decomposition of a finite cyclic group. |
format |
Article |
author |
Chin, A. Y. M. Wang, K. L. Wong, Kok Bin |
author_facet |
Chin, A. Y. M. Wang, K. L. Wong, Kok Bin |
author_sort |
Chin, A. Y. M. |
title |
On the size of complete decompositions of finite cyclic groups |
title_short |
On the size of complete decompositions of finite cyclic groups |
title_full |
On the size of complete decompositions of finite cyclic groups |
title_fullStr |
On the size of complete decompositions of finite cyclic groups |
title_full_unstemmed |
On the size of complete decompositions of finite cyclic groups |
title_sort |
on the size of complete decompositions of finite cyclic groups |
publisher |
Taylor & Francis Inc |
publishDate |
2022 |
url |
http://eprints.um.edu.my/42021/ |
_version_ |
1781704583583629312 |