Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties
The solid-state reaction technique is used to prepare the Gd-doped BiFeO3-PbZrO3 at concentrations x = 0.05, 0.10, 0.15, and 0.20 with chemical formula 0.5(BiGdxFe1-xO3)-0.5(PbZrO3). Room-temperature XRD data are used to compute structural characteristics, such as dislocation density, microstrain, c...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/45115/ https://doi.org/10.1016/j.inoche.2024.112626 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.45115 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.451152024-09-18T00:19:24Z http://eprints.um.edu.my/45115/ Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties Mallick, Priyambada Yadav, Sandhya Kumari Satpathy, Santosh Kumar Behera, Banarji Moharana, Srikanta Sagadevan, Suresh QD Chemistry The solid-state reaction technique is used to prepare the Gd-doped BiFeO3-PbZrO3 at concentrations x = 0.05, 0.10, 0.15, and 0.20 with chemical formula 0.5(BiGdxFe1-xO3)-0.5(PbZrO3). Room-temperature XRD data are used to compute structural characteristics, such as dislocation density, microstrain, crystallite size, and percentage of crystallinity. The SEM micrographs indicate the spherical, tightly packed nature of materials with limited porosity. The extent to which the composites work at high temperatures (175-400 degrees C) as NTC thermistors. Understanding the properties of the NTC thermistor requires the calculation of the resistor constant, sensitivity index, and activation energies. Based on the frequency- and temperature-dependent AC conductivity of the composites, a high density of states was calculated. Elsevier 2024-08 Article PeerReviewed Mallick, Priyambada and Yadav, Sandhya Kumari and Satpathy, Santosh Kumar and Behera, Banarji and Moharana, Srikanta and Sagadevan, Suresh (2024) Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties. Inorganic Chemistry Communications, 166. p. 112626. ISSN 1387-7003, DOI https://doi.org/10.1016/j.inoche.2024.112626 <https://doi.org/10.1016/j.inoche.2024.112626>. https://doi.org/10.1016/j.inoche.2024.112626 10.1016/j.inoche.2024.112626 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Mallick, Priyambada Yadav, Sandhya Kumari Satpathy, Santosh Kumar Behera, Banarji Moharana, Srikanta Sagadevan, Suresh Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
description |
The solid-state reaction technique is used to prepare the Gd-doped BiFeO3-PbZrO3 at concentrations x = 0.05, 0.10, 0.15, and 0.20 with chemical formula 0.5(BiGdxFe1-xO3)-0.5(PbZrO3). Room-temperature XRD data are used to compute structural characteristics, such as dislocation density, microstrain, crystallite size, and percentage of crystallinity. The SEM micrographs indicate the spherical, tightly packed nature of materials with limited porosity. The extent to which the composites work at high temperatures (175-400 degrees C) as NTC thermistors. Understanding the properties of the NTC thermistor requires the calculation of the resistor constant, sensitivity index, and activation energies. Based on the frequency- and temperature-dependent AC conductivity of the composites, a high density of states was calculated. |
format |
Article |
author |
Mallick, Priyambada Yadav, Sandhya Kumari Satpathy, Santosh Kumar Behera, Banarji Moharana, Srikanta Sagadevan, Suresh |
author_facet |
Mallick, Priyambada Yadav, Sandhya Kumari Satpathy, Santosh Kumar Behera, Banarji Moharana, Srikanta Sagadevan, Suresh |
author_sort |
Mallick, Priyambada |
title |
Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
title_short |
Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
title_full |
Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
title_fullStr |
Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
title_full_unstemmed |
Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties |
title_sort |
impact of gadolinium doping on bifeo3-pbzro3 for energy storage applications: structural, microstructural, and thermistor properties |
publisher |
Elsevier |
publishDate |
2024 |
url |
http://eprints.um.edu.my/45115/ https://doi.org/10.1016/j.inoche.2024.112626 |
_version_ |
1811682088751988736 |