Recovery and reutilisation of copper from metal hydroxide sludges

Sludges generated from electroplating waste-waters contain high concentrations of metals. Studies have confirmed that the concentrations of several metals in the sludge exceed that of those found in natural ores. A very good example is in the case of copper. The natural copper ore contains less than...

Full description

Saved in:
Bibliographic Details
Main Authors: Sethu, V.S., Abdul Raman, Abdul Aziz, Aroua, M.K.
Format: Article
Language:English
Published: 2008
Subjects:
Online Access:http://eprints.um.edu.my/4517/1/Sethu-2008-Recovery_and_reutili.pdf
http://eprints.um.edu.my/4517/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
Language: English
id my.um.eprints.4517
record_format eprints
spelling my.um.eprints.45172019-12-06T07:38:26Z http://eprints.um.edu.my/4517/ Recovery and reutilisation of copper from metal hydroxide sludges Sethu, V.S. Abdul Raman, Abdul Aziz Aroua, M.K. TA Engineering (General). Civil engineering (General) Sludges generated from electroplating waste-waters contain high concentrations of metals. Studies have confirmed that the concentrations of several metals in the sludge exceed that of those found in natural ores. A very good example is in the case of copper. The natural copper ore contains less than 1 of copper, whereas copper precipitate sludges from the electroplating industry may have an average of 5-10 of copper. Thus, they are one of the largest sources of untapped metal-bearing secondary materials amenable to metals recovery. In Malaysia, most of these metal-bearing sludges are disposed in specially engineering landfills, as many of them do not have the proper incentives and recovery technology. Very less metal recovery is being carried out, and there seems to be a huge waste in these valuable metal resources. With regards to that, an experimental study was carried out to develop and optimise a method of copper recovery from metal hydroxide sludges. Sludge samples containing high concentrations of copper were obtained from a local electroplating plant for the study. A procedure based upon mineral acid leaching or solubilisation was carried out. Two different types of acids, hydrochloric acid (HCl) and sulphuric acid (H2SO4) were used to compare the extractability of copper. Experiments were conducted at various acid concentrations and temperatures to determine the maximum amount of copper recoverable. From the results obtained, maximum copper (95) was solubilised using H2SO4 of 10 M at temperature 110 degrees C, for a leaching period of 4 h. These copper concentrated solutions were then heated and crystallised to form CuSO4 crystals. These crystals were then washed with water and purified. They can be then further treated and reutilised in the metallurgical industry. This study introduces a sustainable method of utilising an electroplating sludge containing valuable metals. 2008 Article PeerReviewed application/pdf en http://eprints.um.edu.my/4517/1/Sethu-2008-Recovery_and_reutili.pdf Sethu, V.S. and Abdul Raman, Abdul Aziz and Aroua, M.K. (2008) Recovery and reutilisation of copper from metal hydroxide sludges. Clean Technologies and Environmental Policy, 10 (2). pp. 131-136. ISSN 1618-954X
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
language English
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Sethu, V.S.
Abdul Raman, Abdul Aziz
Aroua, M.K.
Recovery and reutilisation of copper from metal hydroxide sludges
description Sludges generated from electroplating waste-waters contain high concentrations of metals. Studies have confirmed that the concentrations of several metals in the sludge exceed that of those found in natural ores. A very good example is in the case of copper. The natural copper ore contains less than 1 of copper, whereas copper precipitate sludges from the electroplating industry may have an average of 5-10 of copper. Thus, they are one of the largest sources of untapped metal-bearing secondary materials amenable to metals recovery. In Malaysia, most of these metal-bearing sludges are disposed in specially engineering landfills, as many of them do not have the proper incentives and recovery technology. Very less metal recovery is being carried out, and there seems to be a huge waste in these valuable metal resources. With regards to that, an experimental study was carried out to develop and optimise a method of copper recovery from metal hydroxide sludges. Sludge samples containing high concentrations of copper were obtained from a local electroplating plant for the study. A procedure based upon mineral acid leaching or solubilisation was carried out. Two different types of acids, hydrochloric acid (HCl) and sulphuric acid (H2SO4) were used to compare the extractability of copper. Experiments were conducted at various acid concentrations and temperatures to determine the maximum amount of copper recoverable. From the results obtained, maximum copper (95) was solubilised using H2SO4 of 10 M at temperature 110 degrees C, for a leaching period of 4 h. These copper concentrated solutions were then heated and crystallised to form CuSO4 crystals. These crystals were then washed with water and purified. They can be then further treated and reutilised in the metallurgical industry. This study introduces a sustainable method of utilising an electroplating sludge containing valuable metals.
format Article
author Sethu, V.S.
Abdul Raman, Abdul Aziz
Aroua, M.K.
author_facet Sethu, V.S.
Abdul Raman, Abdul Aziz
Aroua, M.K.
author_sort Sethu, V.S.
title Recovery and reutilisation of copper from metal hydroxide sludges
title_short Recovery and reutilisation of copper from metal hydroxide sludges
title_full Recovery and reutilisation of copper from metal hydroxide sludges
title_fullStr Recovery and reutilisation of copper from metal hydroxide sludges
title_full_unstemmed Recovery and reutilisation of copper from metal hydroxide sludges
title_sort recovery and reutilisation of copper from metal hydroxide sludges
publishDate 2008
url http://eprints.um.edu.my/4517/1/Sethu-2008-Recovery_and_reutili.pdf
http://eprints.um.edu.my/4517/
_version_ 1654960601116442624