Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information

The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Shah, Mohammad Nazri Md, Azman, Raja Rizal, Chan, Wai Yee, Ng, Kwan Hoong
Format: Article
Published: SAGE Publications 2024
Subjects:
Online Access:http://eprints.um.edu.my/45700/
https://doi.org/10.1177/08465371231171700
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.45700
record_format eprints
spelling my.um.eprints.457002024-11-08T08:26:03Z http://eprints.um.edu.my/45700/ Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information Shah, Mohammad Nazri Md Azman, Raja Rizal Chan, Wai Yee Ng, Kwan Hoong R Medicine (General) The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice. Graphical Abstract Les deux dernieres decennies ont ete marquees par une augmentation significative de l'utilisation de la TDM avec un accroissement correspondant de la dose moyenne d'irradiation de la population. L'augmentation du recours a la TDM a entraine une amelioration de la certitude diagnostique pour des affections qui n'etaient pas evaluees de maniere habituelle par TDM, comme les cephalees, les dorsalgies et les douleurs thoraciques. Des donnees non utilisees, sans rapport avec le diagnostic principal et incorporees a ces examens d'imagerie, offrent la possibilite d'avoir des mesures specifiques des organes qui peuvent servir a etablir un pronostic ou un profil de risque pour des patients atteints d'affections tres diverses. Recemment, une disponibilite accrue de la puissance informatique, de l'expertise et des logiciels de segmentation et de mesure automatisees, assistee par une intelligence artificielle, fournit un environnement favorable au deploiement de ces analyses dans le cadre d'un usage de routine. La collecte de donnees provenant de TDM pourrait ajouter de la valeur aux examens et contribuer a compenser la perception du public sur les dangers de l'exposition aux radiations. Dans cet article, nous passons en revue le potentiel represente par la collecte de ces donnees et nous proposons l'incorporation de cette strategie dans la pratique clinique reguliere. SAGE Publications 2024-02 Article PeerReviewed Shah, Mohammad Nazri Md and Azman, Raja Rizal and Chan, Wai Yee and Ng, Kwan Hoong (2024) Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information. Canadian Association of Radiologists Journal, 75 (1). pp. 92-97. ISSN 0846-5371, DOI https://doi.org/10.1177/08465371231171700 <https://doi.org/10.1177/08465371231171700>. https://doi.org/10.1177/08465371231171700 10.1177/08465371231171700
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic R Medicine (General)
spellingShingle R Medicine (General)
Shah, Mohammad Nazri Md
Azman, Raja Rizal
Chan, Wai Yee
Ng, Kwan Hoong
Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
description The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice. Graphical Abstract Les deux dernieres decennies ont ete marquees par une augmentation significative de l'utilisation de la TDM avec un accroissement correspondant de la dose moyenne d'irradiation de la population. L'augmentation du recours a la TDM a entraine une amelioration de la certitude diagnostique pour des affections qui n'etaient pas evaluees de maniere habituelle par TDM, comme les cephalees, les dorsalgies et les douleurs thoraciques. Des donnees non utilisees, sans rapport avec le diagnostic principal et incorporees a ces examens d'imagerie, offrent la possibilite d'avoir des mesures specifiques des organes qui peuvent servir a etablir un pronostic ou un profil de risque pour des patients atteints d'affections tres diverses. Recemment, une disponibilite accrue de la puissance informatique, de l'expertise et des logiciels de segmentation et de mesure automatisees, assistee par une intelligence artificielle, fournit un environnement favorable au deploiement de ces analyses dans le cadre d'un usage de routine. La collecte de donnees provenant de TDM pourrait ajouter de la valeur aux examens et contribuer a compenser la perception du public sur les dangers de l'exposition aux radiations. Dans cet article, nous passons en revue le potentiel represente par la collecte de ces donnees et nous proposons l'incorporation de cette strategie dans la pratique clinique reguliere.
format Article
author Shah, Mohammad Nazri Md
Azman, Raja Rizal
Chan, Wai Yee
Ng, Kwan Hoong
author_facet Shah, Mohammad Nazri Md
Azman, Raja Rizal
Chan, Wai Yee
Ng, Kwan Hoong
author_sort Shah, Mohammad Nazri Md
title Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
title_short Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
title_full Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
title_fullStr Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
title_full_unstemmed Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information
title_sort opportunistic extraction of quantitative ct biomarkers: turning the incidental into prognostic information
publisher SAGE Publications
publishDate 2024
url http://eprints.um.edu.my/45700/
https://doi.org/10.1177/08465371231171700
_version_ 1816130444791382016