Machine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction-associated steatotic liver disease - The Gut and Obesity in Asia (GO-ASIA) Study
Background: The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non-alcoholic fatty liver disease (NAFLD/MASLD). Aims: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients. Methods: Twenty-one ML mod...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
格式: | Article |
出版: |
Wiley
2024
|
主題: | |
在線閱讀: | http://eprints.um.edu.my/45707/ https://doi.org/10.1111/apt.17891 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|