Techno-economic and life cycle assessment of a nanofluid-based concentrated Photovoltaic/Thermal-Thermoelectric hybrid system
The Photovoltaic/Thermal-Thermoelectric hybrid system (PV/T-TEG) effectively improves the solar energy conversion rate. This work presents the environmental, exergy, and economic performance of a nanofluid-based concentrated PV/T-TEG hybrid system. The analysis has considered two types of TEG materi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/45769/ https://doi.org/10.1016/j.jpowsour.2024.234066 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
Summary: | The Photovoltaic/Thermal-Thermoelectric hybrid system (PV/T-TEG) effectively improves the solar energy conversion rate. This work presents the environmental, exergy, and economic performance of a nanofluid-based concentrated PV/T-TEG hybrid system. The analysis has considered two types of TEG material with different characteristics. An in-house MATLAB code has been developed to model the hybrid system and evaluate its performance. In addition, a comparative study is carried out to contrast the proposed hybrid system's performance against conventional configurations, namely: standard concentrator PV module (SCPV), nanofluid-based concentrated PV/Thermal system (NCPV/T), and a heat sink-based concentrated PV/thermoelectric system (HSCPV/TEG). The simulation output reveals that at the optimum value of solar concentration C = 5, and operating temperature of 35(degrees)C, the average exergy efficiency of the proposed NCPV/T-TEG(A) is about 15.28 % higher by 2.37%, 3.13%, 5.83%, 7.32%, and 7.43% compared to NCPV/T-TEG(B), NCPV/T, HSCPV/TEG(A), HSCPV/TEG(B), SCPV, respectively. According to environmental analysis, it has been found that the NCPV/T-TEG(A) configuration engendered the highest CO2 emissions during the manufacturing phase. However, during the production phase (over 25 years), a 1 m(2) of NCPV/T-TEG(A) hybrid system provided the highest GWP avoidance of 1208.9 kg.CO2.eq.m(- 2).year (-1). |
---|