Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution
Population growth has reduced the available freshwater resources and increased water pollution, leading to a severe global freshwater crisis. The decontamination and reuse of wastewater is often proposed as a solution for water scarcity worldwide. Membrane technology is a promising solution to the p...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/46217/ https://doi.org/10.3390/w14223616 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.46217 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.462172024-08-12T07:41:25Z http://eprints.um.edu.my/46217/ Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution Yaghoubi, Sina Babapoor, Aziz Mousavi, Seyyed Mojtaba Hashemi, Seyyed Alireza Gholami, Ahmad Lai, Chin Wei Chiang, Wei-Hung GE Environmental Sciences TD Environmental technology. Sanitary engineering Population growth has reduced the available freshwater resources and increased water pollution, leading to a severe global freshwater crisis. The decontamination and reuse of wastewater is often proposed as a solution for water scarcity worldwide. Membrane technology is a promising solution to the problems currently facing the water and wastewater treatment industry. However, another problem is the high energy costs required to operate systems which use membranes for water treatment. In addition, membranes need to be replaced frequently due to fouling and biofouling, which negatively affect water flow through the membranes. To address these problems, the researchers proposed membrane modification as a solution. One of the exciting applications of plasmonic nanoparticles (NPs) is that they can be used to modify the surface of membranes to yield various properties. Positive feedback was reported on plasmonic-modified membranes as means of wastewater treatment. However, a fundamental gap exists in studies of plasmonic membranes' performance and applications. Given the importance of membrane technology for water and wastewater treatment, this paper reviews recent advances in the development of plasmonic chemically modified bioactive membranes and provides a perspective for future researchers interested in investigating modified membranes. MDPI 2022-11 Article PeerReviewed Yaghoubi, Sina and Babapoor, Aziz and Mousavi, Seyyed Mojtaba and Hashemi, Seyyed Alireza and Gholami, Ahmad and Lai, Chin Wei and Chiang, Wei-Hung (2022) Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution. Water, 14 (22). ISSN 2073-4441, DOI https://doi.org/10.3390/w14223616 <https://doi.org/10.3390/w14223616>. https://doi.org/10.3390/w14223616 10.3390/w14223616 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
GE Environmental Sciences TD Environmental technology. Sanitary engineering |
spellingShingle |
GE Environmental Sciences TD Environmental technology. Sanitary engineering Yaghoubi, Sina Babapoor, Aziz Mousavi, Seyyed Mojtaba Hashemi, Seyyed Alireza Gholami, Ahmad Lai, Chin Wei Chiang, Wei-Hung Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
description |
Population growth has reduced the available freshwater resources and increased water pollution, leading to a severe global freshwater crisis. The decontamination and reuse of wastewater is often proposed as a solution for water scarcity worldwide. Membrane technology is a promising solution to the problems currently facing the water and wastewater treatment industry. However, another problem is the high energy costs required to operate systems which use membranes for water treatment. In addition, membranes need to be replaced frequently due to fouling and biofouling, which negatively affect water flow through the membranes. To address these problems, the researchers proposed membrane modification as a solution. One of the exciting applications of plasmonic nanoparticles (NPs) is that they can be used to modify the surface of membranes to yield various properties. Positive feedback was reported on plasmonic-modified membranes as means of wastewater treatment. However, a fundamental gap exists in studies of plasmonic membranes' performance and applications. Given the importance of membrane technology for water and wastewater treatment, this paper reviews recent advances in the development of plasmonic chemically modified bioactive membranes and provides a perspective for future researchers interested in investigating modified membranes. |
format |
Article |
author |
Yaghoubi, Sina Babapoor, Aziz Mousavi, Seyyed Mojtaba Hashemi, Seyyed Alireza Gholami, Ahmad Lai, Chin Wei Chiang, Wei-Hung |
author_facet |
Yaghoubi, Sina Babapoor, Aziz Mousavi, Seyyed Mojtaba Hashemi, Seyyed Alireza Gholami, Ahmad Lai, Chin Wei Chiang, Wei-Hung |
author_sort |
Yaghoubi, Sina |
title |
Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
title_short |
Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
title_full |
Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
title_fullStr |
Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
title_full_unstemmed |
Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
title_sort |
recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution |
publisher |
MDPI |
publishDate |
2022 |
url |
http://eprints.um.edu.my/46217/ https://doi.org/10.3390/w14223616 |
_version_ |
1809136928941932544 |