Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Aziz, Dara M., Abdulwahid, Rebar T., Hassan, Sangar A., Aziz, Shujahadeen B., Singh, Pramod K., Al-Asbahi, Bandar A., Ahmed, Abdullah A. A., Woo, H. J., Kadir, M. F. Z., Karim, Wrya O.
Format: Article
Published: Springer 2024
Subjects:
Online Access:http://eprints.um.edu.my/47041/
https://doi.org/10.1007/s10924-024-03198-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.47041
record_format eprints
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
QC Physics
QD Chemistry
spellingShingle Q Science (General)
QC Physics
QD Chemistry
Aziz, Dara M.
Abdulwahid, Rebar T.
Hassan, Sangar A.
Aziz, Shujahadeen B.
Singh, Pramod K.
Al-Asbahi, Bandar A.
Ahmed, Abdullah A. A.
Woo, H. J.
Kadir, M. F. Z.
Karim, Wrya O.
Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
description This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon `\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }}$$\textbackslashend{document} and epsilon `'\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }{\textbackslashprime }}$$\textbackslashend{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon `\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }}$$\textbackslashend{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F
format Article
author Aziz, Dara M.
Abdulwahid, Rebar T.
Hassan, Sangar A.
Aziz, Shujahadeen B.
Singh, Pramod K.
Al-Asbahi, Bandar A.
Ahmed, Abdullah A. A.
Woo, H. J.
Kadir, M. F. Z.
Karim, Wrya O.
author_facet Aziz, Dara M.
Abdulwahid, Rebar T.
Hassan, Sangar A.
Aziz, Shujahadeen B.
Singh, Pramod K.
Al-Asbahi, Bandar A.
Ahmed, Abdullah A. A.
Woo, H. J.
Kadir, M. F. Z.
Karim, Wrya O.
author_sort Aziz, Dara M.
title Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
title_short Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
title_full Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
title_fullStr Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
title_full_unstemmed Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application
title_sort development and investigation of electrochemical and dielectric properties of eco-friendly lithium-ion conductor biopolymer electrolyte for energy storage application
publisher Springer
publishDate 2024
url http://eprints.um.edu.my/47041/
https://doi.org/10.1007/s10924-024-03198-5
_version_ 1821105757919117312
spelling my.um.eprints.470412025-01-06T04:20:49Z http://eprints.um.edu.my/47041/ Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application Aziz, Dara M. Abdulwahid, Rebar T. Hassan, Sangar A. Aziz, Shujahadeen B. Singh, Pramod K. Al-Asbahi, Bandar A. Ahmed, Abdullah A. A. Woo, H. J. Kadir, M. F. Z. Karim, Wrya O. Q Science (General) QC Physics QD Chemistry This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon `\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }}$$\textbackslashend{document} and epsilon `'\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }{\textbackslashprime }}$$\textbackslashend{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon `\textbackslashdocumentclass12pt]{minimal} \textbackslashusepackage{amsmath} \textbackslashusepackage{wasysym} \textbackslashusepackage{amsfonts} \textbackslashusepackage{amssymb} \textbackslashusepackage{amsbsy} \textbackslashusepackage{mathrsfs} \textbackslashusepackage{upgreek} \textbackslashsetlength{\textbackslashoddsidemargin}{-69pt} \textbackslashbegin{document}$${\textbackslashepsilon }<\^>{{\textbackslashprime }}$$\textbackslashend{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F Springer 2024-08 Article PeerReviewed Aziz, Dara M. and Abdulwahid, Rebar T. and Hassan, Sangar A. and Aziz, Shujahadeen B. and Singh, Pramod K. and Al-Asbahi, Bandar A. and Ahmed, Abdullah A. A. and Woo, H. J. and Kadir, M. F. Z. and Karim, Wrya O. (2024) Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application. Journal of Polymers and the Environment, 32 (8). pp. 3845-3868. ISSN 1566-2543, DOI https://doi.org/10.1007/s10924-024-03198-5 <https://doi.org/10.1007/s10924-024-03198-5>. https://doi.org/10.1007/s10924-024-03198-5 10.1007/s10924-024-03198-5