Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring

The present conventional MSPC has several weaknesses in process fault detection and diagnosis. Some researchers in this filed had commented that the MSPC is a powerful tool for data complexity reduction and fault detection in the significant fault appearance data. The current fault detection and dia...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Ridzuan, Mamat
Format: Undergraduates Project Papers
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/10793/1/%28CD8351%29%20MUHAMMAD%20RIDZUAN%20BIN%20MAMAT.pdf
http://umpir.ump.edu.my/id/eprint/10793/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.10793
record_format eprints
spelling my.ump.umpir.107932021-07-06T07:14:39Z http://umpir.ump.edu.my/id/eprint/10793/ Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring Muhammad Ridzuan, Mamat TP Chemical technology The present conventional MSPC has several weaknesses in process fault detection and diagnosis. Some researchers in this filed had commented that the MSPC is a powerful tool for data complexity reduction and fault detection in the significant fault appearance data. The current fault detection and diagnosis method via MSPC is limited to significant faults and does not point put the insignificant ones accurately. In the real time, all variable will be used in monitoring. However in this case only a few of them are truly important. By developed modeling based on multiple linear regressions the relationship between these variables can be figure out. Multiple linear regressions (MLR) is a method used to model the linear relationship between a dependent variable and one or more independent variables. Some assumption should be made in order to obtain an accurate data analysis. The assumptions are variables should normally distribute, a linear relationship between the independent and dependent variables must exist and also the variable should be measure without an error. MLR is probably the most widely used in dendroclimatology for developing models to reconstruct climate variables. Besides they also proposed for control charting methods for lumber manufacturing and profile monitoring applied in public health surveillance. The methods to perform this modeling involve two phases which are Phase I: offline modeling and monitoring and Phase II: online monitoring. As a conclusion, the MLR method is success introduced as a significant improvement compared to the conventional method. On top of those objectives, the original goals of SPC are also been considered as well as carried together, such a way that the productivity of multivariate process monitoring is improved 2013-07 Undergraduates Project Papers NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/10793/1/%28CD8351%29%20MUHAMMAD%20RIDZUAN%20BIN%20MAMAT.pdf Muhammad Ridzuan, Mamat (2013) Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Muhammad Ridzuan, Mamat
Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
description The present conventional MSPC has several weaknesses in process fault detection and diagnosis. Some researchers in this filed had commented that the MSPC is a powerful tool for data complexity reduction and fault detection in the significant fault appearance data. The current fault detection and diagnosis method via MSPC is limited to significant faults and does not point put the insignificant ones accurately. In the real time, all variable will be used in monitoring. However in this case only a few of them are truly important. By developed modeling based on multiple linear regressions the relationship between these variables can be figure out. Multiple linear regressions (MLR) is a method used to model the linear relationship between a dependent variable and one or more independent variables. Some assumption should be made in order to obtain an accurate data analysis. The assumptions are variables should normally distribute, a linear relationship between the independent and dependent variables must exist and also the variable should be measure without an error. MLR is probably the most widely used in dendroclimatology for developing models to reconstruct climate variables. Besides they also proposed for control charting methods for lumber manufacturing and profile monitoring applied in public health surveillance. The methods to perform this modeling involve two phases which are Phase I: offline modeling and monitoring and Phase II: online monitoring. As a conclusion, the MLR method is success introduced as a significant improvement compared to the conventional method. On top of those objectives, the original goals of SPC are also been considered as well as carried together, such a way that the productivity of multivariate process monitoring is improved
format Undergraduates Project Papers
author Muhammad Ridzuan, Mamat
author_facet Muhammad Ridzuan, Mamat
author_sort Muhammad Ridzuan, Mamat
title Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
title_short Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
title_full Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
title_fullStr Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
title_full_unstemmed Utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
title_sort utilizing multiple linear regression technique for interential measure of continuous-based process monitoring
publishDate 2013
url http://umpir.ump.edu.my/id/eprint/10793/1/%28CD8351%29%20MUHAMMAD%20RIDZUAN%20BIN%20MAMAT.pdf
http://umpir.ump.edu.my/id/eprint/10793/
_version_ 1705057009888395264